
Design methodology for compact photonic-crystal-based
wavelength division multiplexers
Victor Liu,1,* Yang Jiao,1,2 David A. B. Miller,1 and Shanhui Fan1

1Department of Electrical Engineering, Stanford University, Stanford, California, USA
2Currently with The D. E. Shaw Group, 120 West Forty-Fifth Street, 39th Floor, New York, New York 10036, USA

*Corresponding author: vkl@stanford.edu

Received December 7, 2010; revised January 16, 2011; accepted January 18, 2011;
posted January 26, 2011 (Doc. ID 139309); published February 15, 2011

We present an extremely compact wavelength division multiplexer design, as well as a general framework for
designing and optimizing frequency selective devices embedded in photonic crystals satisfying arbitrary design
constraints. Our method is based on the Dirichlet-to-Neumman simulation method and uses low rank updates
to the system to efficiently scan through many device designs. © 2011 Optical Society of America
OCIS codes: 000.3860, 130.3120, 130.7408, 230.7408, 260.2110.

Photonic crystal (PhC)-based circuits provide many at-
tractive features for on-chip manipulation of light. A
key ingredient to realizing planar integrated PhC circuits
is a compact wavelength division multiplexer (WDM)
used for separating different wavelengths of light. Exist-
ing PhC WDM designs are based on resonators [1–5],
waveguide couplers [6–8], or superprism effects [9–11].
Devices based on waveguide couplers or superprism ef-
fects tend to have large areas. Resonator-based devices
are compact; however, the key issue is to suppress
reflection [1].
We present here a systematic methodology for design-

ing ultracompact WDM structures in PhCs. As an illustra-
tion, we construct a three-frequency WDM for the TM
polarization with an out-of-plane electric field, in a PhC
consisting of a square lattice of silicon rods with refrac-
tive index 3.4 and radius 0:18a, where a is the lattice con-
stant (a ¼ 600 nm at λ ¼ 1:55 μm). To achieve the filter
function, the structure consists of three output wave-
guides, each coupled to a high-Q resonator cavity tuned
to a different specified frequency. These cavities are
coupled to a common coupler region, which is also con-
nected to the input waveguide. All these waveguides are
single moded.
With temporal coupled mode theory, it was shown in

[12] that, for this class of structure shown in Fig. 1, in
principle, the common coupler region can be designed
to act as an impedance transformer to eliminate reflec-
tion. The detailed design of such a coupler, however,
is nontrivial. An optimized design, in which the coupler
region consists of an aperiodic array of rods [highlighted
yellow region, Fig. 1(a)], indeed functions as a WDM. At
the three target frequencies of ω ¼ 0:3857, 0.3863, and
0:3868 × 2πc=a, incident light from the input waveguide
is routed into the three output waveguides. At these three
frequencies there is very little reflection in the input
waveguide, as well as very little cross talk, defined to
be the sum of outgoing power in any output waveguide
other than the one specified. In contrast, the unoptimized
design [Fig. 1(b)] does not work.
The optimized design in Fig. 1(a) is obtained with a

combination of a fast numerical simulation technique
based on the Dirichlet-to-Neumann (DtN) method [13,14]
and systematic optimizations. We first briefly summarize
the DtN method. The DtN method takes advantage of the

many identical cells of a PhC system. For each unique
type of unit cell, an operator Λ, called the DtN map, is
computed, mapping the fields at the edge of the cell to
their normal derivative. In practice, the fields are discre-
tized with n points along the cell edges, so that, for a
square unit cell, Λ is a 4n × 4n matrix. For the results
in this Letter, we used n ¼ 5; simulating the same struc-
ture with n ¼ 7 did not qualitatively change the results.

The DtN method stores only the fields at the edges of
all unit cells. The system matrix AðωÞ, which describes
the coupling of these fields, is constructed from the op-
erators Λ by applying continuity of the normal deriva-
tives over cell edges inside the computational region, and
boundary conditions for the edges that lie at the bound-
ary of the computational region. We use perfect electrical
conductor (PEC) boundary conditions for edges along

Fig. 1. (Color online) (a) Optimized WDM structure. Filled cir-
cles indicate dielectric rods. The coupler region is highlighted in
yellow. The cavities are highlighted in different colors with hol-
low circles. The solid horizontal lines indicate the positions
where the waveguide power flux is measured, while the dashed
lines indicate PEC boundary conditions. (b) Initial unoptimized
structure. The response spectra for each structure are shown
below the respective structure. The solid black curves are
the reflection spectra in the input waveguide. The colored
dashed curves are the transmission spectra for each output
waveguide, with the colors matching the color code of the cav-
ity. The target frequencies are indicated by arrows.
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the dashed lines in Fig. 1(a), where the field is expected
to vanish. For boundary edges terminating a waveguide
along the solid lines in Fig. 1(a), we impose an outgoing-
wave boundary condition obtained by a decomposition
into the complete outgoing waveguide mode basis [15].
The dimension N of the system matrix is determined
by the total number of unknowns on all cell edges (ap-
proximately 2n unknowns per unit cell).
To calculate the transmission properties of the struc-

ture, we launch a waveguide mode in the input wave-
guide. The field distribution x is then determined by
solving a linear system:

AðωÞxðωÞ ¼ bðωÞ; ð1Þ

where bðωÞ describes the input. The ω dependence is ex-
plicitly stated above to make clear that this is a single-
frequency computation, and will be implied in the
remainder of this Letter. We must solve one system for
each output frequency of interest for the purposes of
WDM design.
From the field distribution x in the computational do-

main, the output power in each waveguide is obtained by
performing a decomposition of the field distribution in
each waveguide into propagating waveguide modes
and can be summarized for the ith waveguide as

pi ¼ xHBix; ð2Þ

where xH is the conjugate transpose of x and Bi is a po-
sitive definite Hermitian matrix computed from the com-
plete outgoing mode basis vectors for the ith waveguide.
In the DtN method, the dimension of the matrix A is

small enough to be inverted directly, even for structures
with a few thousand unit cells. The ability to store A−1

itself is of crucial importance for optimization purposes.
Such an ability enables efficient calculation of device
sensitivity with respect to design parameters, which is
required for gradient-based local optimization strategies.
Within the DtN framework, the derivative A0 of the sys-
tem matrix A with respect to various parameters, such as
the radius, position, and index of a rod, as well as fre-
quency, may be obtained by direct differentiation of
the formulas used to compute DtN maps. The derivative
of the output power from the ith waveguide with respect
to perturbations is then

p0i ¼ x0HBixþ xHBix0 ¼ 2ReðxHBix0Þ
¼ −2ReðxHBiA−1A0xÞ; ð3Þ

which is obtained by differentiating Eqs. (1) and (2).
The ability to store A−1 itself also leads to efficient so-

lution of structures that are locally perturbed from a
structure already solved. Because of the local nature
of the DtN system matrix, a single cell perturbation re-
sults in a low rank (rank 4n, in this case 20) perturbation
of A, because only the coupling between the four edges
adjacent to the perturbed cell is changed. The updated
matrix equation becomes

ðAþ δAÞx ¼ b; ð4Þ

where δA is the perturbation, and can always be ex-
pressed as δA ¼ UΔVT with Δ a rank 4n matrix whose
elements are taken from the difference between the DtN
maps of the perturbed and original cells. The matrices U
and V are of dimension N × 4n, and are zero except for a
single n × n identity matrix in each block column deter-
mined by the location of the perturbed cell. By the matrix
inversion lemma [16], the updated inverse is

ðAþ UΔVT Þ−1 ¼ A−1
− A−1UðΔ−1 þ VTA−1UÞ−1VTA−1;

ð5Þ

requiring only two inversions of a small matrix. Using this
formula is much more efficient than solving the entire
system from scratch and is, therefore, particularly useful
for optimization purposes.

We use simulated annealing to optimize the coupler re-
gion, considering only binary rod flips between empty
unit cells and cells identical to the background PhC unit
cell. The error metric is taken to be the sum of squares of
reflection and cross talk for all frequencies. The optimi-
zation aims to achieve a low error metric by repeating the
following steps:

First, we select a rod in the coupler region to flip by
randomly choosing a rod in the coupler region, with pre-
ferential weighting toward rod flips that will reduce the
error metric. We compute the expected change in the er-
ror metric with respect to the rod’s index. If the sign of
the change is favorable, we increase the probability of
choosing a rod depending on the magnitude of the deri-
vative, up to twice the probability of an unfavorable rod.

Second, the updated system is solved using Eq. (5) to
update the stored full inverse matrix by a low rank adjust-
ment. After perturbation of the coupler, the cavity center
frequencies shift enough to detune the transmission
peaks significantly from the target frequencies. In order
to lock the frequencies of the transmission peak in each
output waveguide to the target frequencies, we optimize
the cavities to adjust their resonance frequencies. We use
an adaptive step-size gradient descent method to simul-
taneously adjust the three-parameter space of rod in-
dexes of each cavity. The solution of the updated
system is again computed using the low rank adjustment
and the gradients were computed using the analytic out-
put power derivatives described previously. A maximum
of 32 iterations were allowed because this step formed
the bulk of the runtime due to the serial nature of the
gradient descent algorithm.

Finally, we use a simulated annealing acceptance cri-
terion to decide whether to keep the updated structure
[17]. For modifications that reduce the error metric rela-
tive to the previous design, the updated structure was
kept unconditionally. Otherwise, the acceptance prob-
ability was exponentially reduced throughout the optimi-
zation run.

In our design process, the three cavities were initially
tuned to the output frequencies by adjusting the rod
indexes (approximately 1, 1.02, and 1.04), and the cou-
pler was initialized to an empty region without any rods.
The transmission spectrum of the initial structure is
shown in Fig. 1(b). The simulated annealing optimization
was run on a 2:7GHz AMD Opteron, with each frequency
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simulation running on a separate core. After 48 h of run-
time in which 73,000 candidate structures were consid-
ered, the optimal coupler region rod pattern is shown
in Fig. 1(a). The error metric of the optimal structure
is 2:6 × 10−4, with the maximum error being 3.0. The
transmission spectra of the device are shown in Fig. 1
with a maximum reflected power of 5%. Representative
field patterns at each target frequency are shown in Fig. 2.
The final design may be fine-tuned further by either en-
larging the optimization region or using a gradient des-
cent method considering additional design parameters,
such as rod indexes or positions using the analytic deri-
vative information.
Although the rod indexes of the cavities in the final de-

sign did not differ appreciably from the initial values, at-
tempting to run the optimization without tuning the
cavities along with the rod flipping did not converge to
any working structure. It is clear that these adjustments
are crucial to systematic WDM design.
In the simulated annealing process, complete conver-

gence is, in fact, not necessary. We already see several
performing structures with very low error metrics before
full convergence in simulated annealing is reached. Re-
peated runs of the optimization procedure starting from
the same initial blank configuration reliably yielded sev-
eral working structures after 48 h; the design shown is
simply a representative structure. The DtN method is si-
milar to previous methods using a Wannier basis in that
the field is expanded in a basis localized to a cell so that
cell perturbations are low rank [18,19]. However, using
the DtN method results in a more sparse system matrix
A. Also, unlike the Wannier function method, here no ad-
ditional difficulty arises in simulating an out-of-plane
magnetic field. Comparing the DtN method to traditional
full-field methods, the DtN method allows simulation of a
single structure in approximately 1 s, while a comparable
simulation using the finite-difference frequency-domain
method would take several minutes.
We have presented an extremely compact design for a

planar PhC WDM filter. We have also described a robust

algorithm for optimizing such devices. Our method is
generally applicable to any frequency selective device
due to the ability to lock the spectral response of the de-
vice to specified frequencies. This method makes possi-
ble the automated design and optimization of large and
complex photonic devices.
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