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1 Introduction

This document collects errata of the Second Edition of Probability, Random
Processes, and Ergodic Properties with occasional reference to the free updated
hard cover original First Edition published in 1988.

The most serious error in the book was discovered by Tamas Linder based
on drafts of the Second Edition. The error originated in the First Edition but
unfortunately was not caught until the Second Edition was already in press.
These notes are intended to correct the faulty results and to also correct several
minor typographical errors discovered by the author and readers since.

The proof of Lemma 9.2 on page 266 (Lemma 8.8.2 in the First Edition) is
incorrect and the lemma is not stated accurately. In addition, the lemma does
not hold in the implied generality and hence its use to prove Theorem 9.2 part
(c) (Theorem 8.3.1 (d) in the first addition) and part (f) (Theorem 8.3.1 part
(g) in the First Edition) is not justified. A correct proof of Theorem 9.2 (c) is
provided.

The original version of these errata (dated 19 October 2010) provided the
primary correction and a few others. This update incorporates several additional
corrections.

This document was updated during March 2023 to include corrections from
Jun Muramatsu of NTT. While correcting the typos he pointed out I found a
few other typos in the book and email archives and the original errata list that
are corrected here.

2 Lemma 9.2 & Implications

This section provides a corrected version of Lemma 9.2 and a corrected proof of
Theorem 9.2 (c) which follows the original paper [R. M. Gray, D. L. Neuhoff and
P. C. Shields, “A generalization of Ornstein’s d–bar distance with applications
to information theory,” Annals of Probability, Vol. 3, No. 2, pp. 315–328, April
1975] .

The proof of Theorem 9.2 (f) given on p. 285 (mislabeled as (g)) is not
correct because it is based on the incorrect original Lemma 9.2. The result is
discussed but not proved here.
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The corrected statement of the Lemma is given next. The key change is
that “G is a standard generating field” replaces the weaker assumption “G is a
countable generating field;” that is, the lemma holds specifically for the count-
able generating field formed as the union of the finite fields constituting a basis.
The conclusions need not hold for an arbitrary countable generating field.

Lemma 9.2
Assume that (Ω,B) is standard and G is a standard generating field. Then

(P(Ω,B), dG) is sequentially compact; that is, if {µn} is a sequence of probability
measures in P(Ω,B), then it has a subsequence µnk

that converges.
Proof: Suppose that {µn} is a sequence of probability measures in P(Ω,B).

Since G is countable, we can use the standard (Cantor) diagonalization proce-
dure to extract a subsequence µnk

such that limk→∞ µnk
(G) converges for all

G ∈ G. In particular, if G = {Gi; i = 0, 1, . . .}, first pick a subsequence of n
for which µn(G0) converges, then pick a further subsequence for which µn(G1)
converges, and so on. The result is a set function λ(G) defined for G ∈ G. This
set function is obviously nonnegative and normalized λ(Ω) = 1. Furthermore,
λ is finitely additive on G. This follows since G =

⋃
Fn, the union of a collec-

tion of finite fields (the basis) and hence given any two disjoint sets F,G ∈ G,
there must be some finite N for which F,G ∈ Fn for all n ≥ N and hence
µn(F ∪ G) = µn(F ) + µn(G) for all n ≥ N so that λ(F ∪ G) = λ(F ) + λ(G).
Since the field G is standard, there is a unique extension of the finitely additive
set function λ to a countably additive set function on G, which in turn has
an extension to a probability measure, say µ, on σ(G) from the Caratheodory
extension theorem. By construction, limn→∞ µn(G) = µ(G) for all G ∈ G and
hence limn→∞ dG(µn, µ) = 0. 2

The example following Lemma 9.2 relates to Lemma 9.1 and not Lemma 9.2
since in the example G is a countable generating field as required by the first part
of Lemma 9.1, but it is not standard as required by Lemma 9.2. To clarify this,
the title of the subsection entitled “An Example” should be Distributional Dis-
tance and Weak Convergence” and the first part of the first sentence should be
changed from “As an example of the previous construction” to “As an example
of the implications of convergence with respect to distributional distance”.

Theorem 9.2.(c) Proof

For completeness the entire proof is given rather than weaving in corrections.
The corrected proof follows as closely as possible the structure and notation of
the incorrect proof.

Given ε > 0 let π ∈ Ps(µX , µY ) be such that Eπρ1(X0, Y0) ≤ ρ′(µX , µY )+ε.
The induced distribution on {Xn, Y n} is then contained in Pn, and hence using
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the stationarity of the processes

ρn(µXn , µY n) ≤ Eρn(Xn, Y n) = nEρ1(X0, Y0) ≤ n(ρ′(µX , µY ) + ε),

and therefore normalizing by n and taking the limit implies ρ′ ≥ ρ since ε is
arbitrary.

Let πn ∈ Pn, n = 1, 2, . . . be a sequence of measures such that

Eπn [ρn(Xn, Y n)] ≤ ρn + εn

where εn → 0 as n → ∞. Let qn denote the product (block independent)
measure on the sequence space (AI,BI)2 induced by the πn as explained next.

Let G denote a countable generating field for the standard space (AI,BI).
For any N and N -dimensional rectangle F = ×i∈IFi with all but a finite number
N of the Fi being A2 and the remainder being in G2

qn(F ) =
∏
j∈I

πn(×(j+1)n−1
i=jn Fi).

Thus qn is the pair process distribution obtained by gluing together independent
copies of πn. This measure is n-stationary by construction and we form a
stationary process distribution πn by averaging over n-shifts as

πn(F ) =
1

n

n−1∑
i=0

qn(T−iF )

for all events F .
This measure on the rectangles extends to a stationary pair process dis-

tribution πn on the sequence space (AI,BI)2. For any m = 1, 2, . . . , n the mth
marginal restrictions of the πn can be related to corresponding original marginal
distributions. For example, consider the Y marginal and let G = ×m−1i=0 Gi ∈ Gm.
Then

qn( x, y : xm ∈ Am, ym ∈ G}) = πn(An × (G×An−m))

= µY n(G×An−m) = µYm(G). (1)

Similarly
qn( x, y : xm ∈ G, ym ∈ Am}) = µXm(G).

Thus

πmn (Am ×G) = πn({(x, y) : xm ∈ Am, ym ∈ G)

=
n−m+ 1

n
µYm(G) +

1

n

m−1∑
i=1

µYm−i(×m−ik=i )µY i(×i−1k=0Gk)

with a similar expression for G×Am.
Since there are a countable number of finite dimensional rectangles in BI

with coordinates in G, we can use a diagonalization argument to extract a
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subsesquence πnk
of πn which converges on all of the rectangles. To do this

enumerate all the rectangles, then pick a subsequence converging on the first,
then a further subsequence converging on the second, and so on. The result
is a limiting measure π on the finite-dimensional rectangles, and this can be
extended to a measure also denoted by π on (AI,BI)2; that is, to a stationary
pair process distribution. Eq. (1) implies that for each fixed m

lim
n→∞

πn(Am ×G) = πm(Am ×G) = µYmG)

lim
n→∞

πn(G×Am) = πm(G×Am) = µXmG)

and hence for any cylinder F ∈ B that

π(AI × F ) = µY (F )

π(F ×AI) = µX(F ).

Thus π induces the desired marginals and hence π ∈ Ps and that

ρ′(µX , µY ) ≤ Eπρ1(X0, Y0)

= lim
k→∞

Eπnk
ρ1(X0, Y0)

= lim
k→∞

n−1k

nk−1∑
i=0

Eqnk
ρ1(Xi, Yi)

= lim
k→∞

(ρnk
+ εnk

) = ρ(µX , µY )

proving that ρ′ ≤ ρ and hence that they are equal.

Theorem 9.2 (f)

The proof of Theorem 9.2 (f) (Theorem 8.3.1 in the First Edition) is incorrect
because it used Lemma 9.2 (Lemma 8.2.2) in a situation where that lemma does
not apply. In particular, the repaired Lemma 9.2 requires a standard generating
field G and not just a countable generating field. Convergence in distributional
distance with respect to a countable generating field is not sufficient to ensure
that the average distortion between the coordinates of the limiting process is
bound above by the limit supremum of the average distortions of the pn. This
is an upper semicontinuity result and the distributional distance with respect
to the standard field required by Lemma 9.2 is not strong enough to guarantee
it. This error is not contained in the cited references where the other parts of
the theorem are proved, it first appeared in the First Edition. The fact that the
infimum is a minimum for ρ̄n is well known in the optimal transport literature,
e.g., Villani [110-11], but the proof involves considerably more machinery than
developed in the book. Specifically, it invokes Prohorov’s theorem to demon-
strate that under the given assumptions, given a sequence pn there exists a
limit p to which pn converges weakly. The weak convergence, the continuity
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of distortion with respect to the underlying metric, and the bounded average
distortions lead to a proof. Convergence in the sense of a distributional distance
using a standard generating field is not strong enough to ensure weak conver-
gence. Convergence in the sense of a distributional distance with respect to
the countable generating field using the open sets as in Lemmas 1.10 and 9.3 is
sufficient to ensure weak convergence, but not sufficient to ensure a convergent
subsequence. I have not found a simpler proof taking advantage of Lemma 9.2.
This result has been removed from the corrected First Edition.

3 Ergodic Properties

In Chapter 7 many variations on a single typo of occurred where a relative
frequency < f > of a measurement f appeared only as f . All of these errors
are collected in this section.

Section 7.1

Page 196, first displayed equation on page:

< f >n= n−1
n−1∑
i=0

f(T ix).

should be

< f >n (x) = n−1
n−1∑
i=0

f(T ix).

Correction thanks to thanks to Jun Muramatsu, NTT.
Page 197 first displayed equation: replace

lim
n→∞

1

n

n−1∑
i=0

f(T ix) = f(x)

by

lim
n→∞

1

n

n−1∑
i=0

f(T ix) =< f > (x)

Page 197 second displayed equation replace

| < f >n −f | →
n→∞

0.

by
| < f >n − < f >| →

n→∞
0.
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Page 197 third displayed equation: replace

| < fT >n − < f > |

= |(n+ 1

n
) < f >n+1 −n−1f− < f >|

≤ |(n+ 1

n
) < f >n+1 − < f >n+1| +| < f >n+1 −f | +n−1 | f |

≤ 1

n
| < f >n+1| +| < f >n+1 −f | +

1

n
|f | →

n→∞
0

where the middle term goes to zero by assumption, implying that the first term
must also go to zero, and the right-most term goes to zero since f cannot assume
∞ as a value. by

| < fT >n − < f > |

= |(n+ 1

n
) < f >n+1 −n−1f− < f >|

= | < f >n+1 − < f > +n−1(< f >n+1 −f)|
≤ | < f >n+1 − < f > |+ n−1| < f >n+1 |+ n−1|f | →

n→∞
0

where the leftmost term goes to zero by assumption, the middle term goes to
zero since < f >n+1 converges to < f >, and the right-most term goes to zero
since f cannot assume ∞ as a value.

Section 7.2

Page 200, Displayed equation above Lemma 7.3. Replace

| n−1
n−1∑
i=0

∫
G

fT i dm−
∫
G

f dm | = |
∫
G

(n−1
n−1∑
i=0

fT i − f)dm|

≤
∫
G

|n−1
n−1∑
i=0

fT i − f | dm

≤ ‖ < f >n −f‖1 →
n→∞

0.

by

| n−1
n−1∑
i=0

∫
G

fT i dm−
∫
G

< f > dm | = |
∫
G

(n−1
n−1∑
i=0

fT i− < f >)dm|

≤
∫
G

|n−1
n−1∑
i=0

fT i− < f >| dm

≤ ‖ < f >n − < f > ‖1 →
n→∞

0.

Page 200-201, Eqs. (7.1)-(7.2). Replace

lim
n→∞

n−1
n−1∑
i=0

∫
G

fT i dm =

∫
G

f dm, all G ∈ B.
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Thus, for example, if we take G as the whole space

lim
n→∞

n−1
n−1∑
i=0

Em(fT i) = Emf.

by

lim
n→∞

n−1
n−1∑
i=0

∫
G

fT i dm =

∫
G

< f > dm, all G ∈ B.

Thus, for example, if we take G as the whole space

lim
n→∞

n−1
n−1∑
i=0

Em(fT i) = Em < f > .

Page 201, Eqs. (7.3)-(7.4): replace

lim
n→∞

n−1
n−1∑
i=0

m(T−iF ∩G) = lim
n→∞

n−1
n−1∑
i=0

∫
G

1FT
idm

= Em(1F 1G), all F,G ∈ B.(7.3)

For example, if G is the entire space than (7.3) becomes

lim
n→∞

n−1
n−1∑
i=0

m(T−iF ) = Em(1F ), all events F.(7.4)

by

lim
n→∞

n−1
n−1∑
i=0

m(T−iF ∩G) = lim
n→∞

n−1
n−1∑
i=0

∫
G

1FT
idm

= Em(< 1F > 1G), all F,G ∈ B.(7.3)

For example, if G is the entire space than (7.3) becomes

lim
n→∞

n−1
n−1∑
i=0

m(T−iF ) = Em(< 1F >), all events F.(7.4)

Section 7.5

Page 222: Proof of Lemma 7.2, first displayed equation: Replace

lim
n→∞

Em(< f >n) = Emf.

by
lim
n→∞

Em(< f >n) = Em < f > .

Page 222: Proof of Lemma 7.2, second displayed equation: Replace

Emf = Emf.

by
Em < f >= Emf.
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Section 7.6

Page 225, Lemmas 7.11 and Corollary 7.10: Replace 2nd displayed equation on
page

f = Em(f |I).

by
< f >= Em(f |I).

Similarly make same replacement in last displayed equation on page.

Section 7.7

p. 227, first displayed formula in statement of Lemma 7.14. Replace

lim
n→∞

< f >n= Emf = lim
n→∞

n−1
n−1∑
i=0

EmfT
i.

by

lim
n→∞

< f >n= Em < f >= lim
n→∞

n−1
n−1∑
i=0

EmfT
i.

Miscellaneous Typographical Errors

Page 2, Eq. (1.1) should read d(a, b) = 0 if and only if a = b.
Thanks to Michael D. White for catching this typo.
On p. 207, displayed equation in the middle of he page: replace

f(x) = 1F (x) lim
n→∞

1

n

n−1∑
n=0

f(T ix).

by

f(x) = 1F (x) lim
n→∞

1

n

n−1∑
i=0

f(T ix).

Chapter 9 Corrections thanks to Jun Muramatsu, NTT.
Page 264, first line of Lemma 9.1: Replace
The metric space (P((Ω,B)), dG) The same error occurs in the statement of

Lemma 9.2 on p. 266, which error is fixed in the corrected statement of the
Lemma previously given.

by
The metric space (P(Ω,B), dG)
Page 276, line 9: replace

| µX(G)− µY (G) |≤ µY (Bc)− µX(Bc
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by
| µX(G)− µY (G) |≤ µY (Bc)− µX(Bc)

line 14: replace

| µX(G)− µY (G) |=
∑
x

|µX(x)− µY (x)|

by

| µX − µY |=
∑
x

|µX(x)− µY (x)|

Page 277, Eq. (9.12): replace

(µX(x)− µY (x))1B(x)(µY (x)− µX(x))1Bc(x).

µX(B)− µY (B)

by
(µX(x)− µY (x))1B(x)(µY (y)− µX(y))1Bc(y)

µX(B)− µY (B)
.
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