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I. Introduction and Overview

Signal compression: motivation

World is increasingly digital:

• Digitally acquired signals

• Analog signals converted to digital

Why??

Digital signals (images, speech, etc.) can

• be stored (saved, archived) in a digital medium (computer
disk)

• be transmitted locally or remotely over a digital
communications link (telecommunications, T1, optical fiber)

• be archived in public databases (ftp, Web)
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• be processed by computer:

– computer assisted diagnosis/decision

– automatic search for specified patterns

– context searches

– highlight or mark interesting suspicious regions

– focus on specific regions of image intensity

– statistical signal processing

∗ enhancement/restoration

∗ denoising

∗ classification/detection

∗ regression/estimation/prediction

∗ feature extraction/pattern recognition

∗ filtering
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Problem: Digital image files are large
Massive quantities of data can overwhelm resources.

• low-resolution, TV quality, color video image: 512× 512
pixels/color, 8 bits/pixel, and 3 colors⇒≈ 6× 106 bits

• 24× 36 mm (35-mm) negative photograph scanned at 12µm:
3000× 2000 pixels/color, 8 bits/pixel, and 3 colors
⇒≈ 144× 106 bits

• 14× 17 inch radiograph scanned at 70µm: 5000× 6000 pixels,
12 bits/pixel⇒≈ 360× 106 bits. Medium size hospital
generates terrabytes each year.

• Scanning a modest sized Durer print at 12bpp, 2400dpi,
produces a file of over 40Mbytes.
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• LANDSAT Thematic Mapper scene: 6000× 6000
pixels/spectral band, 8 bits/pixel, and 6 nonthernmal spectral
bands ⇒≈ 1.7× 109 bits

Solution?
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Compression required for ef-
ficient transmission

• send more data in avail-
able bandwidth

• send the same data in less
bandwidth

• more users on same same
bandwidth

and storage

• can store more data

• can compress for local
storage, put details on
cheaper media
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Also useful for progressive reconstruction, scalable delivery,
browsing

and as a front end to other signal processing.

Future: Combine compression and subsequent user-specific
processing.
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General types of compression

Lossless compression

noiseless coding, lossless coding, invertible coding, entropy
coding, data compaction.

• Can perfectly recover original data (if no storage or
transmission bit errors).

• Variable length binary codewords (or no compression)

• Only works for digital sources.

General idea: Code highly probable symbols into short binary
sequences, low probability symbols into long binary sequences, so
that average is minimized.
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Morse code Consider dots and dashes as binary.

Chose codeword length inversely proportional to letter relative
frequencies

Huffman code 1952, in unix compact utility and many
standards

run-length codes popularized by Golomb in early 1960s, used
in JPEG standard

Lempel-Ziv(-Welch) codes 1977,78 in unix compress
utility, diskdouble, stuffit, stacker, PKzip, DOS, GIF

lots of patent suits

arithmetic codes Fano, Elias, Rissanen, Pasco

IBM Q-coder
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Warning: To get average rate down, need to let maximum
instantaneous rate grow. This means that can get data
expansion instead of compression in the short run.

Typical lossless compression ratios: 2:1 to 4:1
Can do better on specific data types
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Lossy compression

Not invertible, information lost.

Disadvantage: Lose information and quality, but if have enough
(?) bits, loss is invisible.

Advantage: Greater compression possible. (6:1 to 16:1 typical,
80:1 to 100:1 promising in some applications)

Design Goal: Get “best” possible quality for available bits.

Big issue: is “best” good enough?

Examples: DPCM, ADPCM, transform coding, LPC, H.26*,
JPEG, MPEG, EZW, SPHIT, CREW, StackRun
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In between: “perceptually lossless”
(Perhaps) need not retain accuracy past

• what the eye can see (which may depend on context),

• the noise level of the acquisition device,

• what can be squeezed through a transmission or storage
channel, i.e., an imperfect picture may be better than no
picture at all.

This can be controversial (fear of lurking lawyers if misdiagnose
using “lossy” reproduction, even if “perceptually lossless”)

Is lossy compression acceptable?

NO in some applications: Computer programs, bank
statements, espionage

Thought necessary for Science and Medical Images.

Is it??
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Loss may be unavoidable, may have to choose between imperfect
image or no data at all (or long delays).

Loss not a problem with

• Followup studies

• Archives

• Research and Education

• Progressive reconstruction.

• Entertainment

Growing evidence suggests lossy compression does not damage
diagnosis.

In general lossy compression may also include a lossless
compression component, to squeeze a few more bits out.
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Compression Context

• Compression is usually part of general system for data
acquisition, transmission, storage, and display.

• Analog-to-digital conversion and digital acquisition.

• Quality and utility of “modified” digital images.
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Transmitter (Encoding, including compression)

Signal
⇓

A/D Conversion:
Sampling:

CT signal → DT.
fs samples/second.
Fine quantization.

⇓
Signal Decomposition:

Decompose signal into separate
frequency bands or basis functions

Parallel “channels” of data.

⇓

16



Quantization:
Convert separate pieces into bits.

R bits/sample, bit allocation

⇓
Lossless compression:

Further compress in invertible
manner.

⇓
Channel:

Reliable communication of
compressed data

Error control coding

Decoding/Decompression reverses process, except for
quantization, which cannot be reversed.
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Signal The information to be communicated to a user

• speech/audio

• images/graphics

• video/animation

• telemetry

• computer files (binary data)

Encoder What do to signal before channel. Can include
preprocessing, sampling, A/D conversion, signal
decompositions, modulation, compression. Goal is to prepare
signal for channel in a way decoder can recover good
reproduction.

Decoder What do to channel output in order to reconstruct or
render a version of the signal for the user. Can include
inverses or approximate inverses of encoder operations, or
other stuff to enhance reproduction.
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Channel Portion of communication system out of designer’s
control: random or deterministic alteration of signal. E.g.,
addition of random noise, linear or nonlinear filtering.

*transparent channel *wireless (aka radio)
deep space *satellite
telephone lines (POTS, ISDN, fiber) *ethernet
fiber *CD
magnetic tape *magnetic disk
computer memory *modem

Often modeled as linear filtering + conditional probability
distribution

Here ignore the channel coding/error control portion, save for
anecdotal remarks.

Consider individual components

Sometimes combined. Sometimes omitted.
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Sampling/High Resolution Quantization
A/D conversion, digitize space and amplitude.

N ×M pixels, G = 2r gray levels.
Number of bits = N ×M × r

Note: This step not necessary for digitally acquired image.

Basic idea: Sample and quantize

{f(x, y); x, y ∈ R}
⇓

{fn,m = f(n∆x, m∆y); n, m ∈ Z}
⇓

{q(fn,m); n, m ∈ Z}
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The Brig Grand Turk

Most compression work assumes a digital input as a starting
point since DSP is used to accomplish the compression.
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Spatiatially sampled and quantized

(4 bpp)
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Signal decomposition (transformation, mapping): Decompose
image into collection of separate images (bands, coefficients)

E.g., Fourier, DCT, wavelet, subband.

Also: Karhunen-Loeve, Hotelling, Principal Value
Decomposition, Hadamard, Walsh, Sine, Hartley, Fractal

(Typically done digitally.)

Why transform?
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Several reasons:

• Good transforms tend to compact energy into a few
coefficients, allowing many to be quantized to 0 bits without
affecting quality.

• Good transforms tend to decorrelate (reduce linear
dependence) among coefficients, causing scalar quantizers to
be more efficient. (folk theorem)

• Good transforms are effectively expanding the signals in good
basis functions. (Mathematical intuition.)

• The eye and ear tend be sensitive to behavior in the frequency
domain, so coding in the frequency domain allows the use of
perceptually based distortion measures, e.g., incorporating
masking.
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Quantization: Convert high rate digital pixels into a relatively
small number of bits.
Lossy (not invertible), nonlinear

scalar Operate on individual pixels

• uniform

• nonuniform (companded)

vector operate on groups of pixels (VQ)

Vector sources:

• Blocked signals (audio, speech, images, video)

• (R,G,B) pixels

•Multispectral imagery, microphone array

• Stereo images, audio

• LPC frames
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Codeword assignment (“Coding” (Lossless compression,
Entropy Coding): binary words are chosen to represent what
comes out of the quantization step.

Desirable attributes of compression/coding:

• Successive approximation/progressive reconstruction
Each additional bit improves accuracy of signal, don’t need to
wait for all bits to start.

• Scalable: Same bit stream produces different quality/cost
options (rate, complexity, power, . . . )

Decoding/Decompression reverses process, except for
quantization, which cannot be reversed.
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Quantization involved in

• A/D conversion (high resolution quantization)

• digital arithmetic, errors in transforms

• quantization for lossy compression

For computer applications can view original signal as already
digital, yielding a general compression encoder block diagram:

Original
Signal

-
Signal

Decomposition - Quantization -
Lossless
Coding -

Compressed
Bit Stream

Typical Compression System
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Important parameters of compression systems

• Compression efficiency • Bitrate and compression ratio.

• Fidelity, average distortion • MSE, SNR, subjective

• Complexity • algorithmic, hardware, cost

•Memory

• Coding Delay

• Robustness
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Issues in Research and Practice

• encoder and decoder structures

• encoder and decoder algorithms

• encoder and decoder design and optimization

• encoder and decoder performance (R, D)

• encoder and decoder complexity/cost

• theoretical bounds and limits

• Overall quality in application: Subjective quality and
diagnostic accuracy

• systems and standards
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Other issues:

• Variable-rate vs. fixed-rate

• Bitrate control

• Progressive, scalable (power, bitrate, cost, complexity)
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Information theory changes blocks slightly and usually ignores
signal decompositions:

Information Source

⇓
Source Coding

⇓
Channel Coding

Source coding reduces the number of bits in order to save on
transmission time or storage space.
Channel coding typically increases the number of bits or chooses
different bits in order to protect against channel errors.

“Image coding” and “speech coding” mean source coding.
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“Error correction coding” means channel coding.

Information theory (Shannon)⇒ for single source, single user,
can do nearly optimally if separately source and channel code.
NOT true in networks! Better to consider jointly.

Care needed, channel errors can have catastrophic effects on
reconstructing compressed data.
Some work done on joint source-channel coding. Some
consideration given to the effect of bit errors.
Catastrophic errors vs. minor errors of fixed rate schemes.
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If enough bits (samples and quantizer values), cannot tell the
difference between original and digital version.

But how much is enough and how do you prove it?

How much can you compress?
Do you lose important information?
Do you get sued?

Survey the field of compression: methods, theory, and standards.

Some critiques and personal biases.

For a list of many compression-related Web sites with
demonstrations, examples, explanations, and software, visit

http://www-isl.stanford.edu/~gray/iii.html
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Part II. Lossless Coding

noiseless coding, entropy coding, invertible coding, data
compaction.
In much of CS world simply called “data compression”

• Can perfectly recover original data (if no storage or
transmission bit errors) transparent

• Variable length binary codewords.

• Only works for digital sources.

• Can also expand data!
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Simple binary invertible code:
Example: fixed length (rate) code

Input Letter Codeword
a0 00
a1 01
a2 10
a3 11

Can uniquely decode individual codewords and sequences if know
where blocks start. E.g.,
0000011011 decodes as a0a0a1a2a3.

Real world example:
ASCII (American Standard Code for Information Interchange):
assigns binary numbers to all letters, numbers, punctuation for
use in computers and digital communication and storage.

All letters have same number of binary symbols (7).
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Example:

a → 110001
b → 110010
c → 110011
d → 110100
e → 110101

...

May get compression.

Need at least R bits, where 2R > M .

Generally a fixed rate code gives no lossless compression unless
original representation was inefficient.
To get lossless compression need a variable length code.

Goal of noiseless coding is to reduce the average number of
symbols sent while suffering no loss of fidelity.
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variable rate
ambiguous

Input Letter Codeword
a0 0
a1 10
a2 101
a3 0101

Not work
For example, 0101101010 · · · could be produced by
a0a2a2a0a1 · · · or by a3a2a0a1 · · ·.
Ambiguity can never be resolved regardless of future received
bits.

uniquely decodable: if decoder receives a valid encoded sequence
of finite length, there is only one possible input sequence.

i.e., lossless coding of any sequence.
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variable rate
uniquely decodable

Input Letter Codeword
a0 0
a1 10
a2 110
a3 111

Goal of noiseless coding is to reduce the average number of
symbols sent while suffering no loss of fidelity. Basic approaches:

• Statistical: Code likely symbols or sequences with short binary
words, unlikely with long. (Morse code, runlength coding,
Huffman coding, Fano/Elias codes, arithmetic codes)

• Dictionary: Build a table of variable length sequences as they
occur and then index into table. (Lempel-Ziv codes)
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A noiseless code or lossless code consists of

• an encoder α : A→W ⊂ {0, 1, }∗ and

• a decoder β :W → A such that β(α(x)) = x.

One-to-one, invertible

Length: l(α(x)) = length (# bits) of encoded symbol x

Kraft Inequality If code is uniquely decodable, then
∑
x

2l(α(x)) ≤ 1

average length l(α) = El(α(X)) = ∑
a∈A p(a)l(a).

• How small can l(α) be?

• How achieve performance close to optimal?
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Prefix and Tree-structured Codes

Prefix condition: No codeword is a prefix of another codeword.

Ensures uniquely decodable.

Essentially no loss of generality.
Binary prefix codes can be depicted as a binary tree:
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Shannon’s lossless coding theorem: Define entropy H(X) or
H(p) by

H(p) ≡ ∑
a∈A

p(a) log
1

p(a)
Then for any uniquely decodable lossless code

l(α) ≥ H(p);

and there exists a prefix code for which

l(α) < H(p) + 1.

Proof of lower bound to l:
Simple application of Kraft inequality and Divergence inequality,
which follows from definition of divergence (relative entropy) and
Jensen’s inequality.
See any elementary text on information theory or compression.

Proof of upper bound to l:
Simple suboptimal coding construction
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Huffman: simple algorithm yielding the optimum code in the
sense of providing the minimum average length over all uniquely
decodable codes.

Notes

• “optimum” for specified code structure, i.e., memoryless
operation on each successive symbol

• assumes that underlying pmf p is known
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Huffman Codes:
Based on following facts (proved in any compression or
information theory text)
A prefix code is optimal if it has the following properties:

• If symbol a is more probable than symbol b (p(a) > p(b))
then l(a) ≤ l(b)

• The two least probable input symbols have codewords which
are equal in length and differ only in the final symbol

Huffman gave a constructive algorithm for designing such a code.
The input alphabet symbols can be considered to correspond to
the terminal nodes of a code tree . “Grow” trea from leaves to
root, each time satisfying optimality conditions
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00001
0001
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10
11
01

p0 = .01
p1 = .02
p2 = .05
p3 = .09
p4 = .18
p5 = .2
p6 = .2
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A Huffman Code

So far considered only one source symbol at a time.

First order (marginal entropy)

All ideas extend to larger alphabets; e.g., to vectors.

46



Code XN = (X0, · · · , XN−1) ∼ pXN

Shannon:
For any integer N average length satisfies

l ≥ 1

N
H(XN ).

There exists a prefix code for which

l <
1

N
H(XN ) +

1

N
.

For any fixed N , Huffman optimal.

If process stationary, entropy rate

H = min
N

H(XN )

N
= lim

N→∞
H(XN )

N
.

is impossible to beat, and asymptotically achievable by coding
very large blocks.
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Question If “optimal” and can get arbitrarily close to
theoretical limit, why not always use?

Because too complicated : Big N needed, which can make
Huffman tables enormous.

Also: Do not always know distributions, and they can change.
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Leads to many methods that are “suboptimal,” but which
outperform any (implementable) Huffman code.

Good ones are also asymptotically optimal, e.g., arithmetic and
Lempel-Ziv.

Note: codes have global block structure on a sequence, but
locally they operate very differently. Nonblock, memory

Note: Frequently someone announces a lossless code that does
better than the Shannon optimum.

Usually a confusion of first order entropy with entropy rate, often
a confusion of what “optimal” means or what the constraints are.
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Arithmetic codes

Finite-precision version of Elias (& Fano)code developed by
Pasco and Rissanen.
Heart of IBM Q-coder.

Here consider only special case of lossless coding a binary iid
source {Xn} with Pr(Xn = 1) = p and Pr(Xn = 0) = q.
(It is convenient to give a separate name to q = 1− p.)

Key idea: Produce a code that results in codelengths near the
Shannon optimal, i.e., code a sequence xn = (x0, x1, . . . , xn−1)
into a codeword uL where L = l(xn) ≈ − log pXn(xn).
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Suppose encoder and decoder both know n

Encoder: xn→ In→ JL ⊆ In→ uL

Lots of ways to choose L and JL. Choose smallest possible L
and hence biggest possible interval JL.

|In| ≥ |JL| = 2−L ≥ |In

2
| ?

Reason: Given In, divide unit interval into 2L subintervals of size
2−L where L chosen as smallest integer for which
|In| ≥ 2× 2−L. Then one of the subintervals must be contained

in In and hence |JL| ≥ |In
2 |

Decode: uL→ JL→ In ⊇ JL→ xn
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Key fact: Taking logarithms implies that

− log |In| ≤ L ≤ − log |In

2
|

− log pXn(xn) ≤ L ≤ − log
pXn(xn)

2
= − log pXn(xn) + 1

Thus if xn→ JL, then

− log pXn(xn) ≤ l(α(xn)) =≤ − log pXn(xn) + 1

or

so l(xn) ≈ − log pXn(xn) as desired.
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Taking expectations and normalizing:

1

n
H(Xn) ≤ El(Xn) ≤ 1

n
H(Xn) +

1

n

which converges to the optimum H as n gets large!

Collection of leaves uL(xn) is a prefix-free code since a subtree.
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Why “better” than Huffman?

Incrementality of algorithm permits much larger n then does
Huffman. E.g., suppose n = 256× 256 for a modest size image.

Huffman out of the question, would need a tree of depth 265536.

Elias encoder can compute [ak, bk) incrementally as
k = 1, 2, . . . , n.

As Ik shrinks, can send “release” bits incrementally: Send up to
l bits where

Jl ⊇ Ik,

Jl is the smallest interval containing Ik.
Decoder receives Jl, can decode up to xm, where

Im ⊇ Jl ⊇ Ik, where m < k.
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Finally, encoder sends final bits, or can stop if no ambiguity at
decoder (knowing n).

• practical implementations need finite precision, result is
arithmetic code.

• trees can be m-ary
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Extend to sources with memory by using “context modeling”
Compute

[an.bn) =


[an−1, an−1 + (bn−1 − an−1) Pr(Xn = 0|xn−1)) if xn = 0
[an−1 + (bn−1 − an−1) Pr(Xn = 0|xn−1), bn−1) if xn = 1

Pr(Xn = 0|xn−1)) can be learned on the fly, e.g., assume
Markov order and estimate from histograms.

Adaptive arithmetic codes: learn conditional pmf’s on the fly.

Performance depends on how well (accuracy and complexity)
estimate underlying conditional distributions.

Witten, Bell, & Cleary
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Adaptive and Universal Entropy Coding:

Both Huffman codes and arithmetic codes assume a priori
knowledge of the input probabilities. Often not known in
practice.
• Adaptive Codes: Adjust code parameters in real time. Often
by fitting model to source and then coding for model
Examples: adaptive Huffman (Gallager) and adaptive arithmetic
codes. (JBIG, lossless JPEG, CALIC, LOCO-I, Witten, Bell, &
Cleary)

Alternative approach:
• Universal Codes: Collection of codes, pick best

or
build code dictionary from data with no explicit modeling
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Examples of Universal Codes:

Rice machine multiple codebooks, pick one that does best
over some time period.
(4 Huffman codes in Voyager, 1978–1990; 32 Huffman codes in
MPEG-Audio Layer 3)

Lynch-Davisson codes View binary N -vector. First send
integer n giving the number of ones (this is an estimate n/N
of underlying p), then send binary vector index saying which

of the (
N
n) weight n N -dimensional vectors was seen.

Rissanen MDL, send prefix describing estimated model,
followed by optimal encoding of data assuming model.
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Lempel-Ziv codes

Dictionary code, not statistical in construction.
Inherently universal
Variable numbers of input symbols are required to produce each
code symbol.
Unlike both Huffman and arithmetic codes, the code does not
use any knowledge of the probability distribution of the input.
Achieves the entropy lower bound when applied to a suitably
well-behaved source.
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Basic idea (LZ78, LZW): recursively parse input sequence into
nonoverlapping blocks of variable size while constructing a
dictionary of blocks seen thus far.

Each sequence found in the dictionary is coded into its index in
the dictionary.

The dictionary is initialized with the available single symbols,
here 0 and 1.

Each successive block in the parsing is chosen to be the largest
(longest) word ω that has appeared in the dictionary. Hence the
word ωa formed by concatenating ω and the following symbol is
not in the dictionary.

Before continuing the parsing ωa is added to the dictionary and
a becomes the first symbol in the next block.
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Example of parsing and dictionary construction:

01100110010110000100110.

parsed blocks enclosed in parentheses and the new dictionary
word (the parsed block followed by the first symbol of the next
block) written as a subscript:

(0)01(1)11(1)10(0)00(01)011(10)100(01)010(011)0110

(00)000(00)001(100)1001(11)110(0).

The parsed data implies a code by indexing the dictionary words
in the order in which they were added and sending the indices to
the decoder.

Decoder can recursively reconstruct dictionary and input
sequence as bits arrive.
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LZ77 (PKZip)
Assume encoder and decoder have fixed length window of
memory.
In window store the N most frequently coded symbols.

Encoder and decoder both know this information since code
lossless.
Initialize window with standard set of values.
To encode data:

• search through the window and look for the longest matching
string to this window.

• describe length of the match

• describe the location of match in the earlier window

• shift the window to incorporate the latest information and
repeat

Offset & length information also described by lossless code.
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Final thoughts on lossless coding:

• Run Length Encoding

• Predictive Coding

Run length encoding: Simple but still useful.

Often used for data with many repeated symbols, e.g., FAX and
quantized transform coefficients (DCT, wavelet)

Can combine with other methods, e.g., JPEG does lossless coding
(Huffman or arithmetic) of combined quantizer levels/runlengths.
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Predictive: Instead of coding each symbol in a memoryless
fashion, predict the symbol based on information that the
decoder also possesses, form a prediction residual, and code it.
Decoder then adds decoded residual to its version of prediction.
One view: Encoder has copy of decoder and uses current info to
predict next symbol viewed in way known to decoder. Then
forms difference.
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Part III: Lossy Compression

Uniform Scalar Quatization
Roundoff numbers to nearest number in discrete set.
> 100 years old.

Original A/D converter was pulse coded modulation (PCM)
(Oliver, Pierce, Shannon)

Uniform scalar quantization coded by binary indexes.

Mathematical “compression” since mapped analog space into
digital space.

Not practical “compression” since expanded required bandwidth
given modulation techniques of the time.
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Example

Speech ≈ 4 kHz BW.

Sample @ 8 kHz, Quantize to 8bpp⇒ 64 kbps
With traditional ASK, PSK, or FSK, get about 1 bit per Hz
Thus new BW ≈ 64 kHz, 16 times greater than original analog
waveform!!
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Optimal Scalar Quatization
Lloyd (1956)
Optimize PCM by formulating as a constrained optimization
problem

X is scalar real-valued random variable, with pdf fX
Quantizer:

Encoder α : < → I
I is {0, 1, 2, . . . , N − 1}, or an equivalent set of binary
vectors.

Decoder β : I → <
Overall Quantizer Q(x) = β(α(x))

Reproduction codebook C = {β(i); i ∈ I}
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Problem: Given N , find the encoder α and decoder β that
minimize the average distortion (MSE)

E[(X −Q(X))2] =
∫
(x−Q(x))2fX(x) dx

=
N∑
i=1

Pr(α(X) = i))E[(X − β(i))2|α(X) = i]

An example of statistical clustering.
Lloyd algorithm for optimal PCM was one of the original
clustering algorithms. (k-means, isodata, principal points)

Strong parallel between optimal quantization and statistical
algorithms for clustering/classification/pattern recognition.
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Idea:
? Suppose the decoder β is fixed, then the optimal encoder is

α(x) = i which minimizes |x− β(i)|2

(minimum distortion encoder, nearest neighbor encoder)

? Suppose the encoder α is fixed, then the optimal decoder is

β(i) = E[X|α(X) = β(i)]

Conditional expectation is optimal nonlinear estimate.

This gives a descent algorithm for improving a code:

1. Optimize the encoder for the decoder.

2. Optimize the decoder for the encoder.

Continue until convergence.
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General formulation: Lloyd (1957)
Special case (calculus derivation) Max (1960)
“Lloyd-Max Quantizer”

In general only a local optimum, sometimes global (Gaussian)

Most common techniques employ scalar quantization, but
improve performance via prediction, transforms, or other linear
operations.

Uniform simple vs. Lloyd-optimal better performance

Compromise: Companding (µ-law, A-law, etc.)
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Caveat Optimal for fixed rate, i.e., number of quantizer levels N
is fixed. Not optimized for variable rate (variable length) codes,
e.g., if fix entropy instead of N . (Entropy constrained
quantization.)

There are generalized Lloyd algorithms for designing ECQ, but
there are theoretical results (will sketch later) that show:

If the rate is large, then the quantizer solving the ECQ
problem, i.e., minimizing MSE for a given entropy (hence
assuming a subsequent entropy coder), is approximately
uniform!

Thus if variable-rate coding is allowed and the rate is large,
uniform quantization is nearly optimal.
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Predictive coding

Elias (1955). Code differences (residual, prediction error)
Predictive scalar quantization (DPCM, delta modulation, Sigma
Delta modulation. Cutler (1960), Inose & Yasuda (1963), Candy
(1974))
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Transform Coding

Mathews and Kramer (1956)
Huang, Habibi, Chen (1960s)

Dominant image coding (lossy compression) method: ITU and
other standards p*64, H.261, H.263, JPEG, MPEG
C-Cubed, PictureTel, CLI
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MSE:

Dtc =
k∑

i=1
E[|Xi − X̂i|2] = E[||X − X̂||2]

Easy to relate MSE of Xs to MSE of Y s if use orthogonal
transform:
If T ∗ = T−1 so that rows are orthogonal, then

E[||X − X̂||2] = E[||Y − Ŷ ||2]
(linear algebra).
Ensures that inverse transform will not amplify quantization
error.

Which Transforms??
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Karhunen-Loeve Transform

Often referred to as “optimal transform”

Idea: Decorrelate components of vector X . If also Gaussian,
makes independent.

Consider 1D case, assume real:

RX = E[XXt]
X → Y = TX with RY = E[Y Y t] diagonal.

ui denote the eigenvectors of RX (normalized to unit norm)
λi the corresponding eigenvalues (ordered)

The Karhunen-Loeve transform matrix is then defined as T = Ut

where

U = [uiu2 . . . uk],

(the columns of U are the eigenvectors of RX)
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Then

RY = E[Y Y t] = E[UtXXtU ] = UtRXU = diag(λi).

Note that the variances of the transform coefficients are the
eigenvalues of the autocorrelation matrix RX .

Many other transforms, but dominant ones are discrete cosine
transform (DCT, the 800 lb gorilla) and discrete wavelet
transform (DWT).

Theorems to show that if image ≈ Markovian, then DCT
approximates KL

Wavelet fans argue that wavelet transforms ≈ decorrelate wider
class of images.

Often claimed KL “optimal” for Xform codes

Only true (approximately) if high rate, optimal bit allocation
among coefficients, and Gaussian.
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Discrete Cosine Transform

The 1-D discrete cosine transform is defined by

C(u) = α(u)
N−1∑
x=0

f(x) cos


(2x + 1)uπ

2N



for u = 0, 1, 2, . . . , N − 1. The inverse DCT is define by

f(x) =
N−1∑
u=0

α(u)C(u) cos


(2x + 1)uπ

2N



for x = 0, 1, 2, . . . , N − 1. In these equations, α is

α(u) =



√√√√ 1
N for u = 0√√√√ 2
N for u = 1, 2, . . . N − 1.
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The corresponding 2-D DCT pair is:

C(u, v) =

α(u)α(v)
N−1∑
x=0

N−1∑
y=0

f(x, y)

× cos


(2x + 1)uπ

2N

 cos


(2x + 1)vπ

2N


for u, v = 0, 1, 2, . . . , N − 1, and

f(x, y) =

N−1∑
u=0

N−1∑
v=0

α(u)α(v)C(u, v)

× cos


(2x + 1)uπ

2N

 cos


(2x + 1)vπ

2N


for x, y = 0, 1, 2, . . . , N − 1.

Linear and reversible.
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Why DCT so important?

• real

• can be computed by an FFT

• excellent energy compaction for highly correlated data

• good approximation to Karhunen-Loeve transform for Markov
behavior and large images

Won in the open competition for an international standard.

• 1985: Joint Photographic Experts Group (JPEG) formed as
an ISO/CCITT joint working group

• 6/87 12 proposals reduced to 3 in blind subjective assessment
of picture quality

• 1/88 DCT-based algorithm wins

• 92-93 JPEG becomes intl standard
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Once have transform, how actually quantize & code?

Several options:

• Scalar quantize coefficients

– ? Uniform simple and pretty good if high rate and use
subsequent entropy coding. Only need to pick bin size for
each quantizer.

– Lloyd-optimal good for fixed rate applications and very low
bit rate ECQ.

• Quantize groups (subbands) as vectors (complicated)

• Entropy code

– Many zeros after quantizer, runlength code

– Huffman or arithmetic

– Combination
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JPEG is basically

• DCT transform coding (DCT) on 8×8 pixel blocks

• custom uniform quantizers (user-specified Quantization tables)

• runlength coding

• Huffman or arithmetic coding on (runs, levels)

DC coefficient coded separately, DPCM

Sample quantization table

89



S =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99



Uniform quantization: Suppose DCT transformed 8× block is
{θij}. Then quantizer output index is

lij = bθij

Sij
+ .5c (1)

bxc = largest integer smaller than x.

JPEG ubiquitous in WWW
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Vector quantization Quantize vectors instead of scalars.
(theory in Shannon (1959), design algorithms in late 70s)

Motivation: Shannon theory⇒ better distortion/rate tradeoffs
of code vectors.

Added benefit: Simple decompression in general, just table
lookup.

Problem: High encoder complexity in usual implementations.

Applications:
Software based video: table lookups instead of computation
Part of speech coding standards based on CELP and variations.

Basic idea: Quantize vectors instead of scalars.

As with a scalar quantizer, VQ consists of an encoder and
decoder.
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Encoder α : A→W ⊂ {0, 1}∗ (or source encoder) α is a
mapping of the input vectors into a collection W of finite length
binary sequences.

W = channel codebook , members are channel codewords.
set of binary sequences that will be stored or transmitted

W must satisfy the prefix condition

Decoder β :W → Â

(table lookup)

reproduction codebook C ≡ {β(i); i ∈ W}, β(i) called
reproduction codewords or templates.

A source code or compression code for the source {Xn} consists
of a triple (α,W , β) of encoder, channel codebook, and decoder.
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ENCODER

Xn

in = α(Xn)- -

DECODER

in

X̂n = β(in)

- -

General block memoryless source code

A VQ is essentially the Shannon model of a general compression
system operating on successive blocks of data.
Theory of compression mostly based on this model.

Model is sufficiently general to include most real-world methods.
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Performance: Rate and Distortion
Rate:
Given an i ∈ {0, 1}∗, define

l(i) = length of binary vector i

instantaneous rate r(i) = l(i)
k bits/input symbol.

Average rate R(α,W) = E[r(α(X))].

An encoder is said to be fixed length or fixed rate if all channel
codewords have the same length, i.e., if l(i) = Rk for all i ∈ W .

• Variable rate codes may require data buffering, expensive and
can overflow and underflow

• Harder to synchronize variable-rate codes. Channel bit errors
can have catastrophic effects.
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But variable rate codes can provide superior rate/distortion
tradeoffs.
E.g., in image compression can use more bits for edges, fewer for
flat areas. In voice compression, more bits for plosives, fewer for
vowels.

Distortion

Distortion measure d(x, x̂) measures the distortion or loss
resulting if an original input x is reproduced as x̂.

Mathematically: A distortion measure satisfies

d(x, x̂) ≥ 0
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To be useful, d should be

• easy to compute

• tractable

• meaningful for perception or application.

No single distortion measure accomplishes all of these goals.
Most common is MSE:

d(x, y) = ||x− y||2 =
k−1∑
l=0
|xl − yl|2
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Weighted or transform/weighted versions are used for perceptual
coding.

In particular: Input-weighted squared error:

d(X, X̂) = (X − X̂)∗BX(X − X̂),

BX positive definite.

most common BX = I , d(X, X̂) = ||X − X̂||2 (MSE)

Other measures:

Bx takes DCT and uses perceptual masking
Or weights distortion according to importance of x
(Safranek and Johnson, Watson et al.)
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Performance measured by average distortion

D(α,W , β) = D(α, β) = E[d(X, β(α(X))]

Goal of Compression Keep both rate and distortion small.

Optimal tradeoff??

Given all else equal, one code is better than another if it has
lower rate or lower distortion.
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Various structures

• Lattice codes

• Product codes (scalar Quantization, gain/shape)

• Successive approximation/ tree-structured

• Trellis encoded, trellis coded

• Predictive and finite-state

• Fractal coding

Can be applied to transform coefficients

Lloyd algorithm extends to vectors, clustering approach to
design. (Many other clustering algorithms.)
Computationally costly to design.
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Subband/pyramid/wavelet coding (late 1980s)
(Lots of people, e.g., Barnwell, Smith, Adelson, Burt, Mallat,
Vetterli)
Filter and downsample.
Traditional uniform subbands: MUSICAM digital audio
(European standard)

Use filter bank of roughly orthogonal equal bandwidth filters.
(Classical subband decomposition.)
Generalize to nonorthogonal with perfect reconstruction
property

Two dimensional subband decomposition: Separately decompose
rows and columns.

Wavelet, pyramid, or octave subbands: Only split low frequency
band each time.
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One stage of subband decomposition with 2-D separable filters
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(a) (b) (c)

(a) Two stages of uniform decomposition leading to 16 uniform
subbands, (b) Three stages of pyramidal decomposition, leading

to 10 octave-band subbands, (c) a wavelet packet

For each subband in an image (except the very lowest one, and
the three highest ones), each coefficient A is related to exactly 4
coefficients in the next higher band.
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Lena
decomposed
Note:
multiresolution
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Parent-descendants
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Question is then: How code?

I.e., how quantize wavelet coefficients and then lossy code them?

Early attempts used traditional (JPEG-like & VQ) techniques.
Not impressive performance.

Breakthrough came with Knowles and Shapiro (1993):
Embedded zerotree coding.
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Idea: Coefficients have a tree structure, high frequency wavelet
pixels are descended from low frequency pixels.

If a low frequency pixel has low energy (and hence will be
quantized into zero), then the same will likely be true for its
descendents.
⇒ zerotree encoding

Successively send bits describing higher energy coefficients to
greater accuracy.

Additional bits describe most important coefficients with
increasing accuracy and less important coefficients when their
magnitude becomes significant.
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Variations:

• SPHIT algorithm of Said and Pearlman. Optimally trade off
rate and distortion. Lower complexity, better performance.

• CREW algorithm of RICOH. Similar to SPHIT, but uses
integer arithmetic and codes to lossless.

• Others: better handling of space/frequency correlation or
more careful modeling/adaptation, but more complex:
Xiong, Ramchandran, Orchard, Joshi, Jafarkani, Kasner,
Fischer, Farvardin, Marcellin, Bamberger, Lopresto

Alternative: Stack-run coding (Villasenor) Simple runlength
coding (Golomb-Rice codes) of separate subbands. Slightly
inferior performance to SPHIT, but better than Shapiro and
much lower complexity.
See Villasenor’s web site for comparisons.
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SPHIT Examples
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SPHIT Lena with single bit error
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Packetizable zerotree coder,
53-byte packets, 10PSNR=27.7dB

(P. Cosman, UCSD)
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“Second Generation” Codes
Model-based coding. Enormous compression reported, but need
a Cray to compress. Likely to become more important.

Idea: Typically segment or identify objects/textures/background
within image, apply custom compression to each.
EPFL, T. Reed (UCD), X. Wu
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Model-based VQ: LPC

Very different methods used for low-rate speech. Many are based
on classic LPC or Parcor speech compression

Itakura and Saito, Atal and Shroeder, Markel and (A.H.) Gray

First very low bit rate speech coding based on sophisticated SP,
implementable in DSP chips.
Speak and Spell, TI
NTT, Bell, TI and Signal Technology

Model short speech segment x (≈ 25− 50ms) by autoregressive
process (all-pole) σ/A(z) with

A(z) = 1 +
M∑

k=1
akz
−k.
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Reproduction synthesized by driving filter with noise or periodic
pulse train.

White Noise •

Pulse Train •

-@
@

@I

σ/A(z) -
Synthetic
Speech

Without quantization, filter is determined by linear prediction
arguments or maximum likelihood arguments⇒
Levinson-Durbin algorithm on sample autocorrelation.

Mathematically equivalent to a minimum disortion selection of A
and σ to match sample autocorrelation of input segment
(Itakura-Saito distortion)
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Parameters quantized as scalars or vectors (LPC-VQ).
Several parameter vectors possible:

• reflection coefficients

• autocorrelation coefficients

• inverse filter coefficients

• cepstrum

• line spectral pairs (LSP)

Mathematically equivalent when no quantization,
but quantization errors effect each differently.
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Hybrid Model + Closed Loop Residual
CELP

(Inverted RELP, modern version of analysis-by-synthesis)

Codebook for residuals. Given input vector, find residual
codeword that produces best closed loop match out of LPC (or
LPC-VQ) to original input.

Effectively produces a waveform codebook for searching by
passing residual codewords through model linear filter.

Stewart et al. (1981, 1982), Shroeder and Atal (1984, 1985)
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Atal, Gersho & others made practicable by incorporating
perceptual weighting filters, i.e., perceptually meaningful
distortion measures in search.
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Measuring Quality in

Lossy Compressed Images

Digitization, digital acquisition, compression, and DSP (even
“enhancement”) change content.
Allegedly for the better, but how prove quality or utility
equivalent or superior?

SNR Can be useful for screening among algorithms and tells
something about relative performance.
Possibly sufficient for “substantial equivalence” of minor
variation.

Subjective Ratings Ask users to rate the “quality” of the
image on a scale of 1 — 5.
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Diagnostic Accuracy Simulate clinical application: screening
or diagnosis.
Statistical analysis to test hypothesis that “image type A as
good as or better than image type B” for specific tasks.
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Selected Standards

• ITU (International Telecommunications Union)

– telecommunications (telephony, teleconferencing, . . . )

– low-delay two-way communications

– recommendations; nations are members

• ISO (International Standards Organization)

– computer information technology

– asymmetric one-way communications

– standards; standards bodies are members

123



ITU “p× 64” recommendations

(1990)

• for video telephony and video conferencing at ISDN rates (p×

64 kb/s)

– H.261 video coding at p× 64 kb/s

– G.711 audio coding at p× 64 kb/s

(8kHz µ-law PCM)

– H.221 multiplexing, H.242 control

– H.320 capability negotiation
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ITU, ISO ‘JBIG (Joint Bi-level Experts Group)

(1993)

Transmission storage of binary images at multiple spatial

resolutions, multiple amplitude resolutions

Context adaptive arithmetic coding
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ITU “LBC” recommendations

(1997)

• for video telephony at modem rates

(14.4 – 28.8 Kb/s and higher)

– H.263 video coding at p× 64 kb/s

– G.723 audio coding at 6.3 kb/s

(ACELP)

– H.224 multiplexing, H.245 control

– H.324 capability negotiation
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ISO “MPEG-1” standard

(1992)

• for entertainment video ad CDROM rates

(≈ 1.5 Mb/s)

– video coding at ≈ 1.2Mb/s

– audio coding at ≈ 64Kb/s per channel (stereo)

– systems (multiplexing, buffer management,

synchronization, control, capability negotiation)
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Frame sequence: I B B P B B P B B I

I= Intraframe coding ( à la JPEG)

P= Predictive coding (motion estimation)

B= Bidirectional prediction (forward or backward)

Motion estimation: Predict macroblocks by matching luminance

for minimum MSE, code resulting residual by ≈ JPEG
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ISO “MPEG-2” standard

(1994)

• for digital mastering and distribution of entertainment video

at BISDN rates

(≈ 1.5 – 10 Mb/s and higher)

– video coding at ≈ 1.5 – 10 Mb/s

– audio coding at ≈ 64Kb/s per channel (up to 5 channels)

– systems (multiplexing, buffer management,

synchronization, control, capability negotiation)
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ISO “MPEG-4” standard

(1997)

• for interactive information access from computers, set-top

boxes, mobile units

(≈ 10 Kb/s – 1.5 Mb/s)

Intersection of computers (interactivity), entertainment (A/V

data), and telecommunications (networks, including wireless).
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Applications

• Interactive information access

– home shopping, interactive instruction manuals, remote

eductation, travel brochures

•Multiuser communication

– conferencing with shared resources, chat rooms, games

– Editing and recomposition; search
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• Scalable to channel BW and decoder capabilities

• Error resilience

• Coding of arbitrarily shaped regions

• Composition of Visual Objects and Audio Objects
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Part IV: Optimal Compression

A survey of some theory and implications and applications

General Goal: Given the signal and the channel, find an

encoder and decoder which give the “best possible”

reconstruction.

To formulate as precise problem, need

• probabilistic descriptions of signal and channel

(parametric model or sample training data)
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• possible structural constraints on form of codes

(block, sliding block, recursive)

• quantifiable notion of what “good” or “bad” reconstruction is

(MSE, Pe)

Mathematical: Quantify what “best” or optimal achievable

performance is.
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History

1948 Shannon published “A Mathematical Theory of

Communication”

Followed in 1959 by “Coding theorems for a discrete source with

a fidelity criterion”

Probability theory, random process theory, and ergodic theory⇒

fundamental theoretical limits to achievable performance:
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Given probabilistic model of an information source and channel

(for storage or transmission),

how reliably can the source signals be communicated to a

receiver through a channel?

Channel characterized by Shannon channel capacity C which

indicates how fast information can be reliably sent though it,

possibly subject to constraints
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Information source characterized by Shannon distortion-rate

function D(R), the minimum average distortion achievable

when communicating at a rate R

Dual: rate-distortion function R(D), the minimum average

rate achievable when communicating at a rate D.

Both quantities are defined as optimizations involving

information measures and distortion measures such as mean

squared error or signal-to-noise ratios.

137



Shannon proved coding theorems showing these information

theoretic quantities were equivalent to the corresponding

operational quantities.

In particular: joint source/channel coding theorem:

Joint Source/Channel Coding Theorem

If you transmit information about a source with DRF D(R) over

a channel with capacity C, then you will have average distortion

at least D(C). (Negative theorem)
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Furthermore, if complexity and cost and delay are no problem to

you, then you can get as close to D(C) as you would like by

suitable coding (Positive theorem).

Hitch: Codes may be extremely complex with large delay.

Shannon’s distortion rate theory: Fixed R, asymptotically large

k.
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Alternative: Bennett/Zador/Gersho asymptotic quantization

theory; fixed k, asymptotically large R.

Bennett(1948), Zador (1963), Gersho (1979), Neuhoff and Na

(1995)

What does theory have to do with the real world?

• Benchmark for comparison for real communication systems.

• Has led to specific design methods and code structures.

Impossible to do better than Shannon’s bounds (unless you cheat

or have inaccurate model).
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Theory does not include many practically important issues, e.g.:

• Coding delay

• Complexity

• Robustness to source variations

• Effects of channel errors

Over the years, methods evolved to come close to these limits in

many applications.
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Input
Signal

- Encoder - Channel - Decoder -
Reconstructed
Signal

Famous Figure 1

Classic Shannon model of point-to-point communication system

General Goal: Given the signal and the channel, find

encoder/decoder which give “best possible” reconstruction.
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To formulate as precise problem, need

• probabilistic descriptions of signal and channel

(parametric model or sample training data)

• possible structural constraints on form of codes

(block, sliding block, recursive)

• quantifiable notion of “good” or “bad”: distortion

Typical assumptions:

143



• Signal is discrete time or space (e.g., already sampled),

modeled as a vector-valued random process {Xn}, common

distribution PX . Noiseless channel.

• Code maps blocks or vectors of input data into binary strings,

i.e., a VQ (α,W , β)

• Performance measured by D(α, β) = E[d(X, β(α(X))],

R(α,W) = E(r(X))

(Theory can be extended to other structures, e.g., sliding-block

codes, trellis and tree codes, finite-state codes)
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? Every code yields point in distortion/rate plane: (R, D).

-

6

Average Distortion

.5 1 1.5 2 2.5 3.0
Average Rate

uu
u

u

e

hhhhhhhhPPPPPPPP@
@

@
@

@
L

L
L

L
L

L
L

L
L

L
L

LL

uu
u

uu
uuuuu

uu
u

u
uu

u

145



Interested in undominated points in D-R plane: For given rate

(distortion) want smallest possible distortion (rate)⇔ optimal

codes

Optimization problem:

• Given R, what is smallest possible D?

• Given D, what is smallest possible R?

• ? Lagrangian formulation: What is smallest possible D + λR?
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Make more precise and carefully describe the various

optimization problems.

• Rate-distortion approach: Constrain D(α, β) ≤ D. Then

optimal code (α,W , β) minimizes R(α,W) over all allowed

codes.

operational rate-distortion function

R̂(D) = inf
α,W ,β:D(α,β)≤D

R(α,W).
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• Distortion-rate approach: Constrain R(α,W) ≤ R. Then

optimal code (α,W , β) minimizes D(α, β) over all allowed

codes.

operational distortion-rate function

D̂(R) = inf
α,W ,β:R(α,W)≤R

D(α, β).
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• Lagrangian approach: Fix Lagrangian multiplier λ.

Optimal code (α,W , β) minimizes

Jλ(α,W , β) = D(α, β) + λR(α,W)

over all allowed codes.

operational Lagrangian distortion function

Ĵλ = inf
α,W ,β

Eρλ(X, β(α(X))) =

inf
α,W ,β

[D(α, β) + λR(α,W)].

First two problems are duals, all three are equivalent. E.g.,

Lagrangian approach yields R-D for some D or D-R for some R.
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Lagrangian approach effectively uncostrained minimization of

modified distortion Jλ = Eρλ(X, α(X)) where

ρλ(X, α(X)) = d(X, β(α(X)) + λl(α(X))

Note: Lagrangian formulation has recently proved useful for rate

control in video, optimize distortion + λ rate.

Usually wish to optimize over constrained subset of

computationally reasonable codes, or implementable codes.
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Example: fixed rate codes

Require all words inW = range space ofW to have equal length.

Then r(X) constant and problem simplified.

Eases buffering requirments when use fixed-rate transmission

media, Eases effects of channel errors

Lagrangian approach⇔ distortion-rate approach for fixed R.
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Optimalility Properties and Quantizer Design

Extreme Points

Can actually find global optima for two extreme points:

λ→ 0: all of the emphasis on distortion

force 0 average distortion

Minimize rate only as an afterthought.

(0, R) 0 distortion, corresponds to lossless codes
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Shannon’s noiseless coding theorem:

1

k
H(X) ≤ R̂(0) <

1

k
H(X) +

1

k

Huffman code achieves minimum

Note: H =∞ if X continuous.
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λ→∞

All emphasis on rate, force 0 average rate

minimize distortion as an afterthought.

(D, 0): 0 rate, no bits communicated.

Optimal peformance:

D̂(0) = inf
y∈Â

E[d(X, y)].

centroid
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For example, A = Â = <k, squared error distortion, i.e.,

d(x, y) = ||x− y||2 = (x− y)t(x− y)

Then

D̂(0) = inf
y

E[||X − y||2]

is achieved by

min
y
−1E[||X − y||2] = E(X)

155



General case: Generalized Lloyd algorithm:

• optimize the encoder for the decoder:

use a minimum distortion mapping

• optimize the decoder for the encoder:

assign conditional centroids as reproductions

• optimize the codeword assignment for the encoder:

use a Huffman or arithmetic coding of the encoder outputs.

Extension of Lloyd’s algorithm to vectors.

“Vanilla” vector quantization.

Will yield descent design algorithm for complete code
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Hierarchical (Table Lookup) VQ

(Chang et al. (1985 Globecom)) Vector quantization can involve

significant computation at encoder because of searching, but

decoder is simple table lookup.

Can also make encoder table lookup and hence trade

computation for memory if use hierarchical table lookup encoder:
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︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
↓ ↓ ↓ ↓

2D VQ
8 bpp

︸ ︷︷ ︸︸ ︷︷ ︸
↓ ↓

4 bpp
4D VQ

︸ ︷︷ ︸
↓

2 bpp
8D VQ

1 bpp

Each arrow is implemented as a table lookup having 65536

possible input indexes and 256 possible output indexes. The

table is populated by an off-line minimum distortion search.
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For 2D (image/video) compression: Each stage codes to smaller

codewords of rate 8 bits/vector into single larger codeword of

rate 8 bits/vector; 2562→ 256 table lookup.

1D
8 bpp

2D
4 bpp
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4D
2 bpp

8D
1 bpp
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16D
0.5 bpp

32D
0.25 bpp

64D
0.125 bpp
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Can combine with transform coding and perceptual distortion

measures to improve.

(Chou, Vishwanath, Chaddha)

Yields very fast nearly computation-free compression.
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Increasing Dimension

X = Xk, k allowed to vary.

Can define optima for increasing dimensions:

D̂k(R), R̂k(D), and Ĵλ,k

Quantities are subadditive & can define asymptotic optimal

performance

¯̂
D(R) = inf

k
D̂k(R) = lim

k→∞
D̂k(R)

¯̂
R(D) = inf

k
R̂k(D) = lim

k→∞
R̂k(D)
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¯̂
Jλ = inf

k
Ĵλ,k = lim

k→∞
Ĵλ,k.

Shannon coding theorems relate these operationally optimal

performances (impossible to compute) to information theoretic

minimizations.

¯̂
D(R) = D̄(R),

¯̂
R(D) = R̄(D)

i.e., operational DRF (RDF) = Shannon DRF (RDF)

Need some definitions to define Shannon DRF.
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Average mutual information between two discrete random

variables X and Y is

I(X ; Y ) = H(X) + H(Y )−H(X, Y ) =

∑
x,y

Pr(X = x, Y = y) log2
Pr(X = x, Y = y)

Pr(X = x) Pr(Y = y)

Definition extends to continuous alphabets by maximizing over

all quantized versions:

I(X ; Y ) = sup
α1,α2

I(α1(X); α2(Y ))
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Shannon channel capacity: Channel described by family of

conditional probability distributions PY k|Xk, k = 1, 2, . . .

C = lim
k→∞

sup
P

Xk

1

k
I(Xk; Y k)

Shannon distortion-rate function: Source described by family of

source probability distributions PXk, k = 1, 2, . . .

D(R) = lim
k→∞

inf
P

Y k|Xk :I(Xk;Y k)≤kR

1

k
E[dk(Xk, Y k)]
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Lagrangian a bit more complicated, equals D + λR, where

D = D̄(R) at point where λ is the magnitude of the slope of the

DRF.
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Shannon’s distortion rate-theory is asymptotic in that its

positive results are for a fixed rate R and asymptotically large

block size k (and hence large coding delay)

Another approach: Bennett/Zador/Gersho asymptotic

quantization theory.

Fixed k, asymptotically large R.

High rate or low distortion theory.

Theories consistent when both R and k asymptotically large.

But keep in mind: the real world is not asymptopia!
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High Rate (Asymptotic) Quantization Theory

Recall basics (with slighlty different notation):

X , fX(x), MSE

VQ Q or (α̃, ψ, β̃): Reproduction codebook

C = {β(i); i = 1, . . . , N}

Encoder partition S = {Si; i = 1, . . . , N}

Si = {x : Q(x) = β(i)}, PX(Si) = Pr(X ∈ Si)

169



Average distortion:

D(Q) =
1

k
E[||X −Q(X)||2]

=
1

k

N∑
i=1

∫
Si
||x− β(i)||2fX(x) dx

Average rate: Fixed rate code: R(Q) = k−1 log N

Variable rate code:

R(Q) = Hk(X) = −1
k

∑N
i=1 PX(Si) log PX(Si)

As in ECVQ, constraining entropy effectively constraining

average length.
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Operational distortion-rate functions:

D̂k,f (R) = inf
Q∈Qf :R(Q)≤R

D(Q)

D̂k,v(R) = inf
Q∈Qv:R(Q)≤R

D(Q)

where Qf and Qv are the sets of all fixed and variable length

quantizers, respectively.
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Bennett assumptions:

• N is very large

• fX is smooth (so that Riemann sums approach Riemann

integrals and mean value theorem of calculus applies)

• The total overload distortion is negligible.

• The volumes of all bounded cells are tiny.

• The reproduction codewords are the Lloyd centroids of their

cell.
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Assumptions are combined with calculus and approximations to

develop asymptotic (large N) expressions of the form

D ≈ E[
m(X)

λ(X)2/k
]2−2R,

where λ is a quantizer point density function and m is an

inertial profile of the quantizer.

If VQ is a uniform lattice with cell edge length ∆, this becomes

famous D ≈ ∆2

12 commonly used (and misused) in quantization

analysis.
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Result has many applications:

Can use to evaluate scalar and vector quantizers, transform

coders, tree-structured quantizers. Can provide bounds.

Can show, for example, that in the variable rate case, entropy

coded lattice vector quantizers are nearly optimal when the rate

is large.

Used to derive a variety of approximations in compression, e.g.,

bit allocation and “optimal” transform codes.

174



Approximations imply good code properties:

• For the fixed rate case, cells should have roughly equal partial

distortion.

• For the variable rate case, cells should have roughly equal

volume.

In neither case should you try to make cells have equal

probability (maximum entropy).
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Asymptotic theory implies that for iid sources, high rates (low

distortion)

D̂1,v(R)

D̂k,v(R)
≤ 1.533dB

Or, equivalently, for low distortion

R̂1,v(D)− R̂k,v(D) ≤ 0.254 bits

famous “quarter bit” result.
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Suggests at high rates there may be little to be gained by using

vector quantization (but still need to use vectors to do entropy

coding!)
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Bennett theory can be used to “model” the quantization noise

when the conditions hold: the quantization noise under suitable

assumptions is approximately uncorrelated with the input and

approximately white.

This led to the classic “additive white noise model” for

quantization noise popularized by Widrow.

Problems have resulted from applying this approximation when

the Bennett assumptions do not hold.

178



Final Observations

Lossless Coding is well understood and there are many

excellent algorithms. Thought near Shannon limit in many

applications.

Research:

• off-line coding

• transparent incorporation into other systems

• hardware implementations, esp. parallel

• ever better prediction
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Lossy Coding

Wavelets + smart coding generally considered best approach in

terms of trading off complexity, fidelity, and rate, but DCT

Transform coding still being tweaked & variations stay

competive. Inertia resists change.

Uniform quantizers and lattice VQ dominate quantization step,

and nearly optimal for high rate variable rate systems.

Rate-distortion ideas can be used to improve standards-compliant

and wavelet codes. (e.g., Ramchandran, Vetterli, Orchard)
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Research:

• Joint frequency/time(space) quantization.

• Segmentation coding (MPEG 4 structure): different

compression algorithms for different local behavior.

•Multimode/multimedia compression

•Multiple distortion measures (include other signal processing)

E.g., MSE and Pe in classification/detection.

• Compression on networks

• Joint source and channel coding.
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• Universal lossy coding (Ziv, Chou, Effros)

• Supporting theory

• Perceptual coding

• Combining compression with other signal processing, e.g.,

classification/detection or regression/estimation

• Quality evaluation of compressed images: distortion measures

vs. human evaluators
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Research vs. Standards

• Standards have application targets

Research should have some farther targets.

• Research should advance understanding, improve component

technology.

• Research within standards, e.g., MPEG 4.

• Standards are less important with downloadable code.
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