
Page 1

Public-Key Cryptography

EE478 Prof. Hellman

February 1995

These notes are intended to supplement the lectures but are
not intended as a stand-alone text. If you try to follow them
before the lecture, you are likely to have difficulty in places.
Similarly, if you miss a lecture, it will be important to catch
up from someone else in the class.

1.0 The Systems Studied

We will study primarily the Diffie-Hellman public-key dis-
tribution system, the RSA public-key cryptosystem, sys-
tem, ElGamal’s digital signature system, and the Digital
Signature Standard (DSS), which is a variation of ElGam-
al’s system.

Make sure you read the relevant background material on
these systems distributed in class, as these notes assume
you are familiar with the basic operation of the systems:
• In Diffie and Hellman’s “Privacy and Authentication,”

sections II-E, II-F, III-K, and III-L.
• All of Rivest, Shamir and Adleman’s paper.
• NIST’s DSS.

Some good references for background are:

• Gallager, Information Theory and Reliable Communi-
cation, sections 6.3 (Group Theory), 6.4 (Fields and
Polynomials) and 6.6 (Galois Fields). Gallager uses an
engineering-oriented approach to groups and fields for
developing algebraic error-correcting codes, but it is
also very useful for public-key cryptography.

• Niven and Zuckerman, An Introduction to the Theory of
Numbers, is a typical text for a first course in number
theory.

• Knuth, The Art of Computer Programming, volume 2,
section 4.5 covers Euclid’s algorithm and factoring
methods.

• Bressoud, Factorization and Primality Testing, is a
good, elementary treatment of many of the number the-
oretic concepts needed for factoring algorithms, but
stops short in his analysis compared to our needs.

2.0 Why RSA Works

In the RSA paper,

C = ME % n (1)

M = CD % n (2)

D = E-1 % q(n) (3)

where n = pq and q(n) = (p-1)(q-1) is the number of in-
tegers between 1 and n–1 which have no common factors
with n.1 q(n) is known as Euler’s totient function.

The real question is why (1) and (2) are inverse operations.
Substituting (1) into (2), we find M must equal MED%n.
This turns out to be true via (3) because arithmetic in the
exponent is done modulo q(n). The rest of this section is de-
voted to the math required to show why that is the case. So,
I beg your indulgence while we delve into groups, Galois
fields, and related topics. They really are useful!

1. Every pth number has p as a factor, so (p–1)/p of the num-
bers are not ruled out by p. Similarly, (q–1)/q of the num-
bers are not ruled out by q, leaving a fraction (p–1)(q–1)/pq
of the n=pq numbers, for (p–1)(q–1) in all.

Public-Key Cryptography Page 2

Why RSA Works

Definition: A group is a set of elements and an operator de-
noted by •such that: The group is closed, the associative
law holds, there is an identity element e, and every element
has an inverse. If a•b always equals b•a then the group is
called Abelian or commutative.

Definition: A field is a set of elements an addition opera-
tion and a multiplication operation such that: The elements
form an Abelian group under addition, the non-zero ele-
ments form an Abelian group under multiplication, and the
distributive law holds: (a + b)c = ac + bc. As usual, the ad-
ditive identity is denoted by 0, the multiplicative identity by
1, the additive inverse of a by -a, and the multiplicative in-
verse of a by a-1.

Theorem: The set {1, 2, ..., n–1} forms a field under arith-
metic modulo n if and only if n is prime.

Proof: If you have never seen this theorem before, I sug-
gest you first try some small examples, such as n = 5 and
n = 6, to see that it works before worrying about the proof.
For example 2×3 = 1%5 so 2-1 = 3 and 3-1 = 2. It takes a lit-
tle getting used to that “one-half” is 3, and “one-third” is 2.

Addition modulo n is always an Abelian group (–a = n–a)
and the distributive law always holds. Multiplication mod-
ulo n is always closed and associative, and 1 is always the
multiplicative identity. The only question is whether or not
every non-zero element has a multiplicative inverse.

If n = 6 then 2×3=0 %6, so 2 and 3 cannot have multiplica-
tive inverses. Otherwise we could multiply both sides of
2×3=0 by 2-1 to find that 3=0. The same idea shows that
whenever n is not prime, any number that divides n cannot
have a multiplicative inverse. To complete the proof, we
need to show that whenever n = p, a prime number, then ev-
ery non-zero element has a multiplicative inverse. We now
do that constructively, by developing an algorithm for find-
ing a-1 for any non-zero element a. §

(The symbol § denotes the end of a proof or other block,
when needed for clarity) Euclid’s Algorithm finds the GCD
(greatest common divisor) of two numbers, x and y, very
rapidly. An extended version of the algorithm (Knuth, vol-
ume 2, 2nd edition, page 325) also finds two multipliers u1
and u2 such that

u1x + u2 y = GCD(x , y) > u3

Since GCD(p,a) = 1 whenever p is prime and a & 0 %p
(i.e., a is not a multiple of p), we can use the extended al-
gorithm to find solutions to

u1p + u2a = 1

in which case u2 = a-1 %p. Henceforth, I only differentiate
between the basic and extended versions of Euclid’s algo-
rithm when needed for clarity.

The pseudo-program shown below implements Knuth’s
version of Euclid’s algorithm applied to finding multiplica-
tive inverses in modular arithmetic. Once you believe that
this algorithm works, you have completed the proof of the
above theorem that arithmetic modulo p forms a field. (We
do not need u1, so it could be deleted.)

Justification for Basic Euclidean Algorithm: If g divides
x and y, it also divides x+y and x–y. For example, 5 divides
100 and 15, so it also divides 100–15 and 100+15. Similar-
ly it divides 100–15k for any integer k. The above algorithm
merely takes the largest value of k which leaves a non-neg-
ative answer. Here, k = 6 leaves 10 as the remainder. Hence
we can reduce the problem of finding GCD(100,15) to the
problem of finding GCD(15,10). Because the remainders
u3 (or U3 in the box above) are monotone decreasing, the
algorithm must eventually terminate with the u3 = GCD.

Justification for Extended Euclidean Algorithm: Be-
cause the init ial values satisfy u1n + u2a = u3 and
v1n+v2a=v3 any linear combination of the vectors u and v
also satisfies such an equation. (The algorithm forms such
linear combinations.) When u3=1, then u2=a-1%n.

Inverses in Modular Arithmetic
INPUT "Enter A to be inverted"; A
INPUT "Enter modulus N"; N
U = (U1,U2,U3) = (1,0,N)
V = (V1,V2,V3) = (0,1,A)

while(V3&0)
Q = INT(U3/V3)
U = U - QV
SWAP U,V

if (U3=1)
 PRINT "Inverse = "; U2%N
else
 PRINT "No inverse, GCD="; U3

Public-Key Cryptography Page 3

Why RSA Works

While the following theorem is not needed for our immedi-
ate task of proving that arithmetic modulo a prime number
p is a field, it will prove useful in the future. It says that Eu-
clid’s algorithm runs very fast: 100-digit numbers require
at most 479 iteration, and 1000-digit numbers require at
most 4,785 iterations. Immediately following it, we return
to proving that arithmetic modulo p is a field.

Theorem: If 0) u, v < N, then the number of iterations of
the “while loop” in Euclid’s algorithm is at most

 (4)

where the logarithm is to the base

(5)

q is known as the golden ratio because a rectangle whose
sides are in the ratio q:1 has been found in architecture to
be “most pleasing” to the eye. §

Proof: The proof goes beyond what we need. If interested,
see Knuth, volume 2, 2nd edition, Corollary L, page 343.

Definition: A subgroup is a subset of elements of a group
which itself forms a group. The even integers are a sub-
group of the integers under addition.

Definition: The order of a group is the number of elements
contained therein.

Theorem: The order of a subgroup divides the order of the
parent group.

Proof: If interested, see Gallager, page 210, Theorem
6.3.1. It’s not too hard to prove using the concept of cosets.

Corollary: ap-1=1%p provided a&0%p.

Proof: Let a be a non-zero element under arithmetic mod-
ulo p. Because there are only p elements in arithmetic mod-
ulo p, the set must eventually repeat as k goes
through the set of positive integers. We can therefore find k
and m such that ak=ak+m. Multiplying both sides by (ak)-1

shows that then am=1.

You can now show that forms a subgroup under
multiplication modulo p and that the order of the subgroup

5N()log 2<

q
5 1+

2 1.618...= =

ak% p{ }

ak% p{ }

is the least m such that am=1. m must divide the order, p-1,
of the parent group, so for some c, ap-1 = (am)c =1c =1. §

Corollary: ap = a % p for all elements a.

Proof: 0p = 0 % p.

Definition: A Galois field, denoted GF(m), is a field with a
finite number m of elements.

Theorem: For every prime number p and integer k*1, there
is a Galois field GF(pk). There are no others. When k=1,
GF(p) is isomorphic to (indistinguishable from) arithmetic
modulo p (i.e., the field can be transformed to arithmetic
modulo p by relabelling the elements). When k>1, GF(pk)
is isomorphic to arithmetic modulo an irreducible polyno-
mial of degree k. (If you don’t know what that means, don’t
worry. We won’t need it. Gallager is a good reference.)

Proof: If interested, see Gallager, page 230, Theorem
6.6.5.

Definition: a is a primitive element of GF(m) if the set
{ak}k=0

m-1 includes every non-zero field element. (By the
above theorem, m must be a power of a prime.)

Theorem: Every finite field possesses a primitive element.

Proof: If interested, see Gallager, page 226, Theorem
6.6.1. While we will not prove this theorem, we will use it
extensively. It is very useful.

Chinese Remainder Theorem: Let m1, m2, ... , mr be pos-
itive integers that are relatively prime in pairs. Letting

, there is exactly one integer u between 0 and
m–1 that satisfies ui = u %mi.

Note: The history of this theorem goes back to ancient Chi-
na, perhaps as early as the third century A.D.

Proof: We will only prove the theorem for r=2, but the
ideas are similar for larger r. The following table, which
shows u ranging from 0 to 11 and u%2 and u%3 basically
gives the proof.

u 0 1 2 3 4 5 6 7 8 9 10 11
u%2 0 1 0 1 0 1 0 1 0 1 0 1
u%3 0 1 2 0 1 2 0 1 2 0 1 2

m Wmi=

Public-Key Cryptography Page 4

Factoring Algorithms

The proof is by contradiction: Let v(u) denote the pair
(u%m1, u%m2) and suppose v(i) = v(j) with i and j both be-
tween 0 and m–1. This is equivalent to (i%m1, i%m2) =
(j%m1, j%m2) � (i–j)%m1 = (i–j)%m2 = 0 � both m1
and m2 divide i–j � m = m1m2 divides i–j � i–j * m,
contradicting the assumption that i and j are both between
0 and m–1. §

Algorithm for Chinese Remainder Theorem: In the RSA
system we only need the CRT for m1 and m2 being prime
numbers, p and q. If we know x = u%p and y = u%q, we
need to be able to compute z = u%n. This is easily done via

(6)

Justification: We must show that z%p=x and z%q=y. Since
p and q are prime, q%p&0 and ����������p%q&0 � q p-1=1%p and
pq-1=1%q. Using p=0%p and q=0%q, we then see that
z%p=x and z%q=y. §

Note: Because exponentiation can be carried out rapidly
similar to

(7)

the above algorithm is very efficient, even for 100 or 1,000
digit numbers.

We are now in a position to complete the proof that equa-
tions (1) and (2) are inverse operations if E and D are re-
lated by (3). We start by noting that (3) is equivalent to

ED = kq(n) +1. (8)

Theorem: If n = pq then, for all 0)M)n-1,

Mkq(n)+1 % n = M. (9)

Proof: First consider the case where M is relatively prime
to p and q (i.e., M&0%p and M&0%q). Then, letting X de-
note Mkq(n)+1 % n, we find that

X %p = Mk(p-1)(q-1)+1 = [M p-1]k(q-1)M = 1k(q-1)M = M %p

and similarly X%q = M%q. Using the CRT, this implies
that X = M%n = M.

z qp 1< x pq 1< y+() % n=

a10 a2() a2()
2

()
2

=

When M is not relatively prime to p or q (i.e., M=0%p or
M=0%q), the proof proceeds similarly. If M=cp then
X%p=M%p = 0 and the above argument still applies. §

3.0 Factoring Algorithms

We can compute our secret key D via equation (3) because
we know the factorization of n and can therefore compute
q(n) = (p-1)(q-1). If an opponent were able to factor n, he
would be in the same position as we, and could compute D
from our public key (E,n). Factoring large integers was of
great interest in pure mathematics even prior to the devel-
opment of the RSA system, but that innovation has given an
added impetus and practical connotation to the work.

3.1 Semi-Exhaustive Search
The simplest factoring algorithm is to try dividing n by all
smaller integers. One quickly realizes that the effort can be
reduced considerably for two reasons:

• If a prime p does not divide n, then neither does any
multiple of p. Hence the search for divisors can be re-
stricted to primes.

• No more than one prime greater than can divide n.
Hence the search can be further restricted to primes less
than .

Example 1: In trying to factor 103, we must try 2, 3, 5, and
7 (none of which divide 103) and can stop there because
112>103. Therefore 103 is prime.

Example 2: In factoring 6489, we find that 6489 is divisi-
ble by 32, leaving 721 as the quotient; 721 is divisible by 7,
leaving 103; 103 is not divisible by 11 and we can stop
there because 112>103. (An extension of the second point
above allows us to stop at primes greater than the square
root of the quotient left. Of course, here we also knew that
103 was prime from the first example.)

While the above reduction considerably cuts the time to
factor a number, the algorithm is still is impractical for all
but small examples. If, for example, n is 100 digits long,
then the above method can take on the order of 1050 trial di-
visions. (While not all numbers less than are prime, the
difference in the exponent is not that great, reducing to ap-
proximately 1048 because approximately of the

n

n

n

1 ln n()⁄

Public-Key Cryptography Page 5

Factoring Algorithms

numbers between 1 and n are prime.) The following theo-
rem is very useful in working with RSA.

Theorem: Let /(x) denote the number of primes less than
or equal to x. Then

(10)

Proof: Beyond the scope of this course. See Knuth, volume
2, 2nd edition, page 366 for a partial discussion. He gives
the following table which shows good agreement between
the approximation and the actual values.

3.2 Fermat’s Method
The method of section 3.1 can run very rapidly (e.g., fac-
toring 21000), but is typically very slow. Its worst case is
when n=p2, in which case the running time is . It might
appear, therefore, that the RSA system would be strongest
when . However, a factoring algorithm due to Fermat
makes short work of factoring n in such cases.

The basic idea is to search over p–q since that quantitiy is
small when . Letting x = (p+q)/2 and y = (p–q)/2,

(11)

so that n+y2 must be a perfect square, namely x2.

Hence, in factoring n=391, we can set up a table as shown
below and search over y until the square root of n+y2 is an
integer. Further reduction in computation is clearly possi-
ble by using a tangent (or better) approximation to predict
when the last row will hit the next integer, thus allowing us
to skip many values of y.

Table 1: Distribution of Primes

x /(x) x/ln(x)

103 168 144.8

106 78,498 72,382.4

109 50,847,534 48,254,942.4

/ x()

x
 ln x()

x 'A
lim 1=

n

p q5

p q5

x2 y2<
p2 q2 2pq+ +() p2 q2 2pq<+()<

4 n= =

y 0 1 2 3

n+y2 391 392 395 400

19.77 19.80 19.87 20.00

Knuth (volume 2, 2nd edition, page 371) discusses other
improvements.

Fermat’s algorithm is the reason that most RSA systems
choose p and q to be of slightly different lengths, for exam-
ple 249 and 251 bits if a 500-bit product n is desired. This
guarantees that y=(p–q)/2 will be at least 2500 (much too
large to search over), and also protects against any, as yet
discovered, algorithms that work if p/q is close to one.

3.3 The Value of Knowing x2 = y2 Modulo n
Fermat’s method searches for a pair (x,y) which satisfies
x2=n+y2. The next several sections describe fast factoring
algorithms that are generalizations of Fermat’s in that they
search for x and y which satisfy x2=kn+y2, or equivalently
x2=y2%n. To see why this helps, rewrite x2–y2=kn as

(12)

and note that p must divide either (x–y) or (x+y), and so
must q. There are four possibilities:

1. p and q both divide both (x–y), neither divides (x+y), so
GCD(x–y,n)=pq=n and GCD(x+y,n)=1.

2. neither divides (x–y), p and q both divide both (x+y), so
GCD(x–y,n)=1 and GCD(x+y,n)=pq=n.

3. p divides (x–y) and q divides (x+y), so GCD(x–y,n)=p
and GCD(x+y,n)=q.

4. q divides (x–y) and p divides (x+y), so GCD(x–y,n)=q
and GCD(x+y,n)=p.

Theorem: Each of the above four possibilities occurs 1/4
of the time as x and y range over all possible non-zero so-
lutions to x2=y2%n so, if we can find a random such pair,
we can factor n half of the time.

Proof: By the CRT, x2=y2%n � x2=y2%p and x2=y2%q
� x=±y%p and x=±y%q where –y=p–y in mod-p arith-
metic and –y=q–y in mod-q arithmetic. When x=y%p and
x=y%q then, by the CRT, x=y%n � n divides (x–y).

n y2+

x y<() x y+() kpq=

Public-Key Cryptography Page 6

Factoring Algorithms

Similarly, when x=-y%p and x=-y%q , x=-y%n � n di-
vides (x+y). In cases #3 and #4, x&y%n and x=-y%n so the
GCD’s are as shown.

3.4 Dixon’s Method
Although Dixon’s method appeared after several related,
more efficient, algorithms, I start there because it is the
simplest method for generating x and y such that x2=y2 %n.
The idea is best illustrated by example. Let n=391, so that
p=17 and q=23 but, for now, pretend we do not know the
factorization.

First, generate a sequence of random variables, uniformly
distributed between 1 and n–1=390. To do this, I used a
portion of Rand’s book “A million random digits with
100,000 normal deviates.” (That really is the title!) The fol-
lowing table shows the first six random numbers I found,
their squares modulo-n, and the factorizations thereof:

Random xi 347 111 036 122 175 264
xi

2%n 372 200 123 026 127 098
factors 223131 2352 3141 2113 127 2172

Using the second and sixth relations above, we find that in
mod-391 arithmetic:

1112 2642 = (2352) (2172) = 245272 = (22517)2 (13)

111×264=370 and 22517=140, so x2=y2%n with x=370 and
y=140. By the last theorem, this relation gives a 50 percent
chance of factoring n. Computing GCD(x±y, n),

GCD(370-140, 391)=23 and GCD(370+140, 391)=17

we find that we are in luck and have factored n into 23×17.

This example contains almost all the ideas needed for Dix-
on’s algorithm, with one key exception: Completely factor-
ing each xi

2%n would be as hard as factoring n, so a
different approach is needed. Instead, we factor xi

2%n only
if it factors into “small” primes. In the above example, there
is little point in keeping the equation that results from the
third value, 362%n =3×41, because we are unlikely to find
41 as a factor of another xi

2%n, and are therefore unlikely
to be able to produce an even exponent by multiplying this
equation with another. With this note and the above exam-
ple as a guide, the following algorithm should make sense.

1. Set i=1.

2. Generate a random variable which is
statistically independent of all previous xi’s.
Compute xi

2%n and check if it can be written as a prod-
uct of small primes {pk}k=1

K. (p1=2, p2=3, p3=5, p4=7,
p5=11, and pK is the largest “small” prime.) If so, let ei
denote the vector of exponents so that

(14)

If xi
2%n is smooth, go to step #3, else return to the be-

ginning of step #2 with the value of i unchanged.

3. If i=K+10 go to step #4, else set i=i+1 and go to step 2.
(As will be seen, the value K+10 is somewhat arbitrary.
Any number somewhat greater than K would work.)

4. Set up the K+10 by K, binary matrix whose ith row is the
vector of exponents ei each taken mod-2, and find the
first 10 linear dependences. Because addition of expo-
nents corresponds to multiplication, each dependence
gives an equation of the form

 %n (15)

where the exponents ci,k are all even. (A linear depen-
dence gives a result of zero which, in mod-2 arithmetic,
equates to an even value.) Hence, each equation of the
form (15) corresponds to x2=y2%n with

 and (16)

Because each dependence has a 50 percent chance of
factoring n, the probability that none of the 10 depen-
dences factors n is 1/1024. (This is why step #3 noted
that K+10 was somewhat arbitrary. All that is needed is
that the value be approximately equal to K. If it is much
smaller, we do not expect any dependences. If it is much
larger, we have more dependences than needed. Wheth-
er we need K–10 or K+10 does not affect asymptotic
performance of the algorithm as nA'.). §

3.5 Analysis of Dixon’s Method
The effort required by Dixon’s factoring method depends
on K, the number of “small” primes. If K is small, the prob-

xi U 1 n 1<,()¾

xi
2% n pk

ei k,

k 1=

K

.=

xi
2

i
. pk

ci k,

k 1=

K

.=

x xi
i
.= y pk

ci k, 2⁄

k 1=

K

.=

Public-Key Cryptography Page 7

Factoring Algorithms

ability that xi
2%n is smooth in step #2 is small, and the al-

gorithm labors hard to find each success (i.e., a smooth
xi

2%n). If K is large, the algorithm does not have to work
hard for each success, but takes a long time because a large
number (approximately K) of successes are needed. The
optimal value of K balances the effect of these two con-
flicting trends, and minimizes the expected computational
effort to factor n. In optimizing, we will not worry about
factors, such as multiplicative constants, which do not af-
fect the asymptotic form of the required effort. As we shall
see, that means neglecting much more than just multipli-
cative constants.

1, the expected computational effort required to factor n
can be approximated

1 � {K Pr-1(success)[K ln(n) + ln(n)]} + K3 (17)

The final term, K3, is the time required to find the depen-
dences by Gaussian elimination on the K×K binary matrix.
Because the matrix will be sparse, faster methods are pos-
sible. While improving this term is of importance with
more efficient algorithms, it will turn out not to affect the
asymptotic performance of Dixon’s method.

Turning to the rest of the expression, the first factor of K
comes from the need for approximately K successes (e.g.,
K+10 in the previous section). Pr-1(success) is the average
number of iterations of step #2 required per success.

Turning to the two terms in brackets, K ln(n) is the effort
required for trying to divide xi

2%n by the K small primes in
step #2. This makes the technically incorrect assumption
that each small prime will be a single precision variable,
but at worst, this term is K ln(n) lnln(n), and as we shall see
in the next section, logarithmic terms can be neglected. The
second term in brackets, ln(n), approximates the time re-
quired to compute xi

2%n. Again, technically, it should be
ln(n) lnln(n), using FFT techniques, but can be neglected
for reasons developed in the next section.

From equation (17) we see that the next step is to evaluate
Pr(success) in terms of K and n. That requires some back-
ground information:

Definition: ^(X,Y) is the number of positive integers
which are less)X and free of prime divisors >Y. Thus, for
example ^(10,3) = 7 because 1, 2, 3, 4, 6, 8, and 9 can be

written as a product of the numbers {1,2,3}, while 5, 7 and
10 cannot.

Theorem: ^(X,Y)/X = u-u+o(u) where u = ln(X)/ln(Y), pro-
vided X*10 and Y*(ln(X))1+¡ for some ¡>0.

Proof: If interested, see N. G. deBruijn, “On the number of
positive integers) x and free of prime factors >y,” II, Ned-
erl. Akad. Wet. Proc. Ser. A 69 = Indag. Math, vol 38, pp
239-247, 1966.

Note 1: Since the length of a number in digits or bits is pro-
portional to its logarithm, the above theorem says that it is
only the ratio of the lengths of X and Y which matter as-
ymptotically. The probability that a random 100 digit num-
ber factors into primes of at most 10 digits, or that a random
500 digit number factors into primes of at most 50 digits is
approximately 10-10.

Note 2: This theorem combines what is usually two or
three steps. I will describe them mostly for completeness so
that, if you run into any of the notation, you will not be tak-
en by surprise. Usually it is first shown that

(18)

l(u) is known as Dickman’s rho function and, for
A=1,2,3… and A<l(u))A+1, satisfies

(19)

Equation (19) can, in theory1, be integrated to obtain l(u)
for any u because l(u) = 1 for all u)1. (Any number n can
be factored into “small” primes if the upper bound on the
small primes is bigger than n.) Hence, for example, when
1<l(u))2, l(u) = 1 < ln(u). The last step is to show that for
any ¡>0

 (20)

The following table compares several values of l(u) with
the asymptotic form u-u: Note that, even though l(u) be-
comes very small, its ratio with u-u becomes close to 1.

1. The equation is numerically unstable.

^ Y u Y,()

Y uY 'A
lim l u()=

l u() l A()
l v 1<()

v
dv

A

u

0<=

1 uu⁄()
1 ¡+

l u() 1 uu⁄()
1 ¡<

))
u 'A
lim

Public-Key Cryptography Page 8

Factoring Algorithms

u 1 1.5 2 2.5 3 4 5
l(u) 1 0.594 0.307 0.130 0.0486 0.0049 0.00035
uul(u) 1 1.09 1.23 1.28 1.31 1.25 1.11
§

With the above background, Pr(success) � u-u where
u=ln(n)/ln(pK) or, equivalently, pK � n1/u. From (10),
K � pK / ln(pK) so, temporarily assuming that the final K3

term in (17) is negligible:

1 � [pK/ ln(pK)]2 uu ln(n)]

= (uu+2 pK
2) / ln(n) = (uu+2 n2/u) / ln(n) (21)

(22)

(Note: log is the same as ln. My word processor has a glitch
whereby I cannot get ln in some places.) To find the mini-
mum, set the derivative of (22) to zero:

(23)

The first term is asymptotically negligible, so

 2 ln(n) � u2 ln(u). (24)

At first it might seem that we could neglect the ln(u) since
it is so much smaller than u2. However, that turns out not to
work, and the error term suggests that the optimal u is of the
form

(25)

(If we were wrong, the optimal value of ` would either be
infinite, indicating that (25) grows too slowly, or 0, indicat-
ing that it grows too fast.) Plugging (25) into (24) gives

(26)

The numerator of the second term in brackets can be re-
duced asymptotically to lnln(n), cancelling the denomina-
tor of the first term in brackets so, for the optimal `,

`* ln(n) = 4 ln(n) � `* = 4 (27)

t 1log u 2+() ulog
2 nlog

u
nloglog<+�=

u 2+
u

ulog
2 nlog

u2<+ 0�

u
` nlog

nloglog�

2 nlog ` nlog
nloglog

` nloglog nlogloglog<+

2
�

Substituting (27) into (24) and then using that in (22)
while deleting terms that are asymptotically negligible
(e.g., u+2� u, and ln(n)+lnln(n) � ln(n))

(28)

(29)

(30)

This is of the form with k=4. We
now justify our assumption that K3 in (17) is negligible
compared to the first term. That reduces to

(31)

which is true because K<<uu. (I’ll leave it to you to check
that.)

Note 1: The next section presents a simipler derivation of
the behavior, but pulls the bound K
on the largest small prime “out of a hat.” The derivation of
this section gives some understanding of why that bound
works so well.

Note 2: Knuth, vol. 2, 2nd edition, page 383, has what might
be a simpler proof for the continued fraction method, but I
believe it has the wrong value of k. (Knuth has k=4, while
the continued fraction method should have k=2 for reasons
soon to be discussed.) In going over Knuth’s derivation, it
appears that he has not optimized properly over K. He uses
K = (1/2)[ln(n) lnln(n)]1/2 while, following his approach, I
found the optimal value to be [1/81/2][ln(n) lnln(n)]1/2. I
would appreciate any feedback you may have. (e.g., Did I
make a mistake?) Knuth has a simple bound on Pr(success)
that is trivial to derive and yet seems to be adequate for the
derivation. He gives it as an exercise, and so will I:

Exercise: Prove that Pr(success) > Ku/(u! n).

Note 3: While the above proof is not rigorous, Dixon’s al-
gorithm can be proved rigorously to have computation time
of the form . That is the main rea-
son it is of interest, even though it has k=4 while earlier al-
gorithms had smaller values of k. The most difficult part of

t 2
nlog

nloglog 1
2 4log nloglog nlogloglog<+()�

 2 nlog()
nloglog

4 nlog nloglog<+

t 4 nlog() nloglog�

1 exp 4 nlog() nloglog�

exp k nlog() nloglog

K3<< K2 nlog() uu

exp k nlog() nloglog

exp k nlog() nloglog

Public-Key Cryptography Page 9

Factoring Algorithms

making the proof rigorous is to change the theorem about
the density of smooth numbers within the set [1,n–1], so
that it deals with the density of smooth numbers within the
set of quadratic residues modulo-n.

Note 4: For rigorous proofs with smaller values of k, see
Vallée [“Generation of Elements with Small Modular
Squares and Provably Fast Integer Factoring Algorithms,”
Mathematics of Computation, 56, pp. 823-849, 1991] and
her reference to work of Lenstra and Pomerance.)

Note 5: Richard Schroeppel was the first to observe that
 was a possible running time for

factoring algorithms. Such algorithms already existed (e.g.,
the continued fraction method has such a running time with
k=2), but no one had shown they were subexponential.
Schroeppel also was the first to recognize that sieving could
be applied to greatly reduce the run-time to k=1. (Sieving
will be discussed later. It usually halves k.) Most of the lit-
erature I have read shortchanges Schroeppel’s contribution,
probably due to his prejudice against publishing papers.

3.6 Background for a Simpler Derivation
There is a simpler derivation of equation (30) which I now
present using the notation of Coppersmith, Odlyzko and
Schroeppel (denoted COS hereafter; D. Coppersmith, A.
Odlykzo, and R. Schroeppel, “Discrete Logarithms in
GF(p),” Algorithmica, v. 1, n. 1, 1986, pp. 1-16). This der-
ivation depends critically on COS’s Theorem 1 which I
paraphrase below, without the epsilons and deltas that
make it rigorously correct, but harder to understand.

Definition: Let L(c) = exp{c[1+o(1)][ln(n)lnln(n)]1/2} so
that L(c1)L(c2) = L(c1+c2), L(c)k = L(kc), L(c1)+L(c2) =
L(max{c1,c2}), etc.

Theorem: If pK = L(`) and a “success” occurs when a
number of size n_ is smooth wrt pK then

Pr(success) = L(–_/2`). (32)

Note: While Dixon’s algorithm only needs _ = 1 because
the size of x2 % n is comparable to the size of n when x is
U(1,n<1). COS include _ as a parameter because other,
better algorithms will produce numbers comparable to
n1/2, corresponding to _=0.5, or even smaller.

Proof: See COS paper. It follows directly from the fact

exp k nlog() nloglog

that ^(X,Y) � u–u where u = ln(X)/ln(Y).

Theorem: Factors of ln(n) to any power can be neglected
in the expression for 1, the effort to factor a number or
compute a discrete log using Dixon’s method or any other
method which results in 1 being of the form L(k) for some
finite k. Similarly, factors of pK and K are interchangeable.
All the other methods we shall study meet this condition.

Proof: 1=L(k) is super-polynomial in ln(n). Neglecting a
polynomial factor therefore does not change the asymp-
totic form. Similarly pK � K ln(K) and the factor of ln(K)
can be neglected without changing the asymptotic form. §

3.7 Application to Dixon’s Algorithm
With this background, refer back to (17) which gives the
effort for Dixon’s algorithm:

1 � {K Pr-1(success)[K ln(n) + ln(n)]} + K3 (17)

Using the above simplifications, this reduces to

1 � K2Pr-1(success) + K3 (33)

so, letting pK = L(`),

 1 = L(2`)L[1/(2`)] + L(3`) (34)

since _=1 for Dixon’s method (the residues are O(n)).
This reduces to

1 = L[2`+1/(2`)] + L(3`). (35)

Optimizing over pK is now the same as optimizing over `
and is easy: Set the derivative of [2`+1/(2`)] to zero to
find `*=1/2 and 1 = L(2) + L(1.5) = L(2) =
exp{2[ln(n)lnln(n)]1/2}. We also see that the K3 term
which corresponds to Gaussian elimination is negligible.

3.8 Continued Fraction Method
Several advances in factoring algorithms have focussed on
improving Pr(success) by using carefully chosen, rather
than random values, for the xi’s which are squared mod-n in
equation (14). Continued fractions (CF) approximate irra-
tional numbers very rapidly. For example, 22/7 = 3.143 is

Public-Key Cryptography Page 10

Discrete Logarithms

the first CF approximation to / = 3.142, with both rounded
to three decimal places.

See Knuth, vol. 2, 2nd edition, section 4.5.3 for a detailed
exposition of CF’s and pages 380-384 for their application
to factoring via the Morrison-Brillhart CF factoring algo-
rithm. Here, I present the main steps without proof.

• The numerator xi and denominator di of the i th CF ex-
pansion for can be easily computed modulo-n.

• Because (xi /di)2 5 n, it is not surprising that xi
2%n is

small. It can be shown to be O(), instead of O(n) for
the xi

2%n of Dixon’s method.
• The analysis proceeds almost exactly as for Dixon’s al-

gorithm except that u, the ratio of ln(xi
2%n) to ln(pK), is

now half as big for the same pK.
• Because Pr(success) � u-u, we can replace n by n1/2 in

the analysis.
• Because ln(n)lnln(n) � 0.5ln(n)lnln(n), the optimal k is

reduced from 4 to 2.

As explained in Knuth, it is sometimes better to use the CF
expansion for with k being a small integer, instead of
the CF expansion for .

The CF method has almost exactly the same form for 1 as
Dixon’s method. The only difference is that _=1/2 because
the residues are O(n1/2). Hence (17) becomes

 1 = L(2`)L[1/(4`)] + L(3`)

= L[2`+1/(4`)] + L(3`) (36)

The first term is minimized at `*=1/81/2 and yields 1 =
L(21/2)+L[(9/8)1/2] = L(21/2).

4.0 Discrete Logarithms

There is a close connection between factoring and finding
discrete logarithms. About fifteen years ago, when I was
first starting out in this area of cryptography, there were no
direct connections (i.e., no algorithm that was invented for
factoring could be applied directly to discrete logs or vice
versa), but the ^(X,Y) function came up in both places.
Since then, several algorithms have been transferred direct-
ly from one problem to the other. I give this history as ev-
idence to support my hunch that the two problems are
equivalent.

n

n

kn
n

This section describes the algorithm of fifteen years ago
that led to the above conjecture. It has the same running
time as Dixon’s except n, the number to be factored, is re-
placed by p, the prime number which is the modulus for the
discrete logs. Hence . (Later
we will improve from k=4 to k=1, the same as was done for
factoring.)

The algorithm is variously credited to Western and Miller,
to Merkle, and to Adleman for the following reasons: In the
1960’s, Western and Miller were faced with the problem of
compiling tables of indices (the mathematician’s name for
discrete logs) and primitive roots (also known as primitive
elements). The problem is to fit this data into a book, in-
stead of several encyclopedias.

Primitive roots are not hard to tabulate: If _ is one primitive
root mod-p, then all primitive roots can be expressed as _k

where k is any integer relatively prime to p–1. Hence, for
each prime p, all Western and Miller had to do was list one
primitive root (usually the smallest) and the factorization of
p–1. The user could quickly compute all other primitive
roots from this data.

The problem was not so easily solved for indices and, at
first, it might appear that they would have to list a table of
size p–1 for each prime p. Western and Miller recognized,
however, that publishing the indices for a set of small
primes would allow the computation of the indices for all
numbers which were a product of those small prime
(smooth wrt to those primes). If, for example, they pub-
lished the indices for 2 and 3 to some base (any primitive
element _ will do), then you could also compute the index
of 18 = 2×32 from the relation

log(18) = log(2) + 2log(3) % (p–1)

since arithmetic in the exponent is modulo p–1.

If the number y whose index is sought is not of this form,
then compute y' = y_z %p for random values of z until y' is
smooth with respect to the set of small primes, {2,3} in this
simple case. Now you can compute log(y') and subtract z
(modulo p–1) to get log(y). Western and Miller did not an-
alyze the run-time of their algorithm and did not seem to
know it was subexponential.

Merkle independently derived the same algorithm while
working on his Ph.D. thesis under my supervision in ap-

1 exp 4 plog() ploglog=

Public-Key Cryptography Page 11

Discrete Logarithms

proximately 1977. He did not analyze the run-time either.
Worse yet, another of my students did analyze the run-time,
but made an error which indicated that, asymptotically
Merkle’s algorithm (as we called it then) was inferior to
others. I did not catch this error either.

Leonard Adleman, the A of RSA, also derived the algo-
rithm and showed the run-time should be of the form

 [L. Adleman, “A subexponential
algorithm for the discrete logarithm problem with applica-
tions to cryptography,” Proc. 20th IEEE Foundations of
Computer Science Symposium, pp. 55-60, 1979].

The algorithm works in two stages: first compute the logs
of the small primes {/k = log(pk)}k=1

K and then use these
as described above to compute the log of an arbitrary ele-
ment. To find the {/k}:

• choose a sequence of random xi’s uniformly distributed
between 1 and p–1

• compute yi = _x %p and check if yi is smooth with re-
spect to the set of small primes {pk}k=1

K.

Each success produces an equation similar in form to (14)

(37)

which gives an equation in terms of the unknown {/k}:

(38)

Once we have K independent equations, we can solve for
the {/k}. It takes approximately K successes for this to hap-
pen. Hence this first part of the algorithm is exactly equiv-
alent in effort to that required for Dixon’s method of
factoring a number n, provided n is the approximately the
same size as p. The optimal value of u and other quantities
predicted in section 3.5 are all directly applicable.

As indicated earlier, the second phase of the algorithm
computes y' = y_k %p until y' is smooth, in which case
log(y) = log(y')–k %(p–1). This part of the algorithm takes
1/K as much effort as the first part, and is thus negligible.
For this reason, if a number of users share a common mod-
ulus p in a Diffie-Hellman key exchange system or an El-
Gamal signature system, the cryptanalyst can do a large

exp k nlog() nloglog

_
xi% p pk

ei k,

k 1=

K

.=

xi ei k, /k
k 1=

K

-¤ ¦
£ ¥ % p 1<=

precomputation once and then break individual keys much
more rapidly. This is the danger of a “shared modulus sys-
tem” with the digital signature standard (DSS).

The algorithm can be illustrated by a small example. Take
p = 229 and _ = 6 as the base of the logs. (6 is the smallest
primitive element in GF(229).) Instead of generating ran-
dom xi’s, I used xi = 100, 101, ... (These seemed as if they
should work as well as truly random values.) I took pK = 7,
rather than optimizing over this parameter as in section 3.5
(see exercise below). Here is the resultant table, keeping
only the successes:

We see that log(7) = 107 and log(2) = 5-1105 = 21. Then

 log(3) = 106 – 6log(2) = 208

log(5) = 100 – 2(21+208) = 98

Exercise: Check the four discrete logs found above.

Exercise: I used pK = 7. What is the optimal value predict-
ed in section 3.5? Optimize numerically (precisely) over
pK. What is the optimal value now? How does the actual op-
timal effort compare to the predicted optimal effort 1? This
is a non-trivial, but doable exercise. If any one does it,
please show it to me for possible inclusion in a later version
of these notes.

4.1 Shank’s Method for Discrete Logs
Shank’s method has a running time of approximately p1/2.
Although much slower than the Western-Miller-Merkle-
Adleman algorithm, it is a useful time-memory tradeoff
whose main idea finds application in other areas, including
a very clever factoring algorithm due to Pollard. The trick is
to represent x as a high and low order part

x = x1M + x0 (39)

where M is an integer 5 n1/2. Since

x 100 105 106 107
6x %p 180 32 192 7
factored 22325 25 263 7

0 x p 1<))

Public-Key Cryptography Page 12

Schroeppel’s Algorithm

 (40)

(41)

From (34), y = _x can be restated as

(42)

We therefore construct a table and sort it.
We then compute for x0 = 0, 1, 2, ... until a match is
found with a value in the table. (Sorting the table allows
matching to proceed rapidly.)

A match must be found before x0 = M, so the time and
memory required are each approximately n1/2. A little
thought shows that a more general time-memory tradeoff is
possible so long as the time-memory product TM = n and
M)T. (If M>T then the time required for computing the ta-
ble dominates. Because memory is more expensive than
time, it is hard to imagine such a situation.)

5.0 Schroeppel’s Algorithm

5.1 Fermat Numbers
The great seventeenth century mathematician, Pierre de
Fermat, noticed that 2N+1 was prime for N = 0, 1, 2, 4, 8
and 16. He then conjectured that all numbers of the form
22^n+1 were prime. These are now known as the Fermat
numbers, and are indexed by n, so F0=3, F1=5, F2=17, etc.

Although Fermat established the primality of F0=3 through
F4=65537, none of the succeeding Fermat numbers that
have been tested have been found to be prime. While Fer-
mat’s conjecture had to wait until the next century to be
proved false by Euler, it was well within Fermat’s mathe-
matical and computational abilities to prove that F5 is not
prime. By Fermat’s own theorem (ap-1%p = 1 for all a&0 if
p is prime), he could have shown that F5 was not prime by
computing 3(2^32)%(232+1) and showing that the answer
was not 1. This takes only 32 multiplications mod-n.

Interestingly, the test fails if 2 is used as the base, instead of
3. Fermat may have tried 2 as the obvious base and been
misled. Numbers such that bn-1%n=1 are called pseudo-
primes to the base b. Pseudo-primes to the base 2 are also

0 x0) M 1< n1 2⁄5<

0 x1 p 1<() M⁄[] n1 2⁄5))

y_ x< 0 _
x1M

=

_
x1M

{ } x1 0=

p 1<() M⁄

y_ x< 0

called just pseudo-primes. Pseudo-primes are rare, with the
first five being 341, 561, 645, 1105, 1387.

A group of mathematicians and computer scientists has an
informal competition going to see who can factor the larg-
est numbers and attention naturally focuses on numbers of
special form, such as the Fermat numbers. F7=2128+1 held
out until 1970, when Morrison and Brillhart used their CF
method to show that its two factors are 5964958912749217
and 5704689200685129054721. Interest then gravitated to
factoring F8=2256+1. Using exp[2 ln(n) ln ln(n)]1/2 as the
time required by the CF method, approximately 4E18 op-
erations would be needed to factor F8, a computation that
would take over 100,000 years at 1 µsec per operation.
Schroeppel’s algorithm cut the expected running time to
exp[ln(n) lnln(n)]1/2 and requires only half a year at 1 µsec
per operation. While this was an extremely useful improve-
ment, for reasons explained in Section 10.0, Schroeppel
lost the race to factor F8 to a usually much weaker compet-
itor.

5.2 Schroeppel’s Algorithm for Factoring
Let m be the best integer approximation to n1/2. For exam-
ple, if n = 197209, then n1/2 = 444.0822 and m = 444. Be-
cause (n1/2+¡)–n = 2¡n1/2+¡2 and the error in the integer
approx imat ion i s l e s s than 1 /2 , i t fo l lows tha t
m2–n < n1 / 2+0.25. Similarly, provided |A |<<n1 / 2 ,
|(m+A)2–n|=O(n1/2), giving us relations similar to that for
the CF method, with the xi replaced by m+A. Again using
n = 197209 as an example, the following table results:

A 0 1 2 3 4
(m+A)2–n –73 816 1707 2600 3495
factored –1173 243117 31569 235213 3151233

Note that –1 has been added as a new “prime” in the factor-
izations for the following reason: As A becomes larger, the
values of (m+A)2–n also become larger and are less likely
to be smooth. Instead of using A = 0, 1, 2, ... Amax, it makes
sense to use positive and negative values which are bound-
ed in magnitude by Amax/2. Continuing the above table in
this manner we find:

A –1 –2 –3 –4
(m+A)2–n –960 –1845 –2728 –3609
factored –1126315 –11325141 –112311131 –1132401

Public-Key Cryptography Page 13

Schroeppel’s Algorithm

As anticipated, we get more smooth results this way. All
that is required is to add –1 to the factor base and require
the final result to have an even power of –1 as well even
powers of the small primes.

Schroeppel went one step further and suggested using res-
idues of the form (m+A)(m+B)–n and including the (m+A)
or (m+B) terms as new “primes,” just as we added –1. This
allows Amax to be reduced to approximately the square root
of its old value, further reducing the size of the residues and
increasing the chance of their being smooth.

As a small example, again take n = 197209 and m = 444,
and let A and B range from –2 to +2, so that the matrix of
residues (m+A)(m+B)–n is:

B=-2 B=-1 B= 0 B=+1 B=+2
A=-2 -1845 -1403 -961 -519 -77
A=-1 -960 -517 -74 369
A= 0 -73 371 815
A=+1 816 1261
A=+2 1707

The first row (A=–2), first column (B=–2) entry is

(m+A)(m+B)–n = (444–2)(444–2) – 197209 = –1845.

Check a few of the other values to make sure you under-
stand what they represent. Now divide the above matrix of
residues by the first seven primes {2, 3, 5, 7, 11, 13, 17} as
shown below. If the residue is not smooth wrt 17 [e.g.,
–1845 = –(2032 5141)], seven stars are printed. If the residue
is smooth, the vector of seven exponents is printed (e.g.,
–77=–(2030 50711111301701)]. In either case, a plus or mi-
nus sign precedes the entry to indicate whether the residue
is positive or negative. (If the residue is smooth, a minus
sign means the “prime” –1 occurs to the first power.)

-******* -******* -******* -******* -0001100
-6110000 -******* -******* +*******

 -******* +******* +*******
 +4100001 +*******

+*******

Amax=2 is too small to allow factoring n, but the approach
can be outlined. The (2,2) entry above corresponds to

(m–1)2 = –11263151 %n (43)

while the (1,5) entry corresponds to

(m–2)1(m+2)1 = –1171111 %n (44)

In (38), the “primes” m–1 and 2 are raised to even powers
while –1, 3 and 5 have odd powers, so we would seek
other smooth residues which also have –1, 3 and 5 to odd
powers and multiply to obtain all even exponents. In (39),
the primes (m–2), (m+2), (–1), 7, and 11 all have odd
powers, and require cancellation by other smooth residues
which also have these primes to odd powers.

There are K+2+2Amax primes, including –1 and the
(m+j)’s, so we need approximately that many successes
(smooth residues) before we can obtain an equation of the
form

(45)

with both vectors of exponents E and e having only even
components. Once this happens, we have X2=Y2 %n with

(46)

(47)

so that GCD(X–Y, n) = p or q with probability 50 percent.

5.3 Sieving
Thus far, Schroeppel’s algorithm has no advantage over the
CF method. Both give residues that are O(n1/2) instead of
O(n). But, for the same value of K, Schroeppel’s algorithm
has K+2+2Amax primes, while CF has only K. The advan-
tage of Schroeppel’s method only comes into play when
sieving is used. This is similar to the famous “sieve of Er-
atosthenes” for finding all primes in the set [1,N]. Applied
to Schroeppel’s algorithm, sieving works by noting that, if
pk divides (m+A)(m+B)–n, then it also divides

(m+A+pk)(m+B) – n = [(m+A)(m+B) – n] + pk(m+B)

It is therefore unnecessary to try dividing all residues by
each pk. Once we find one residue which is divisible by pk
and which corresponds to (A,B), we know that all residues

m j+()
Ej

j Amax<=

Amax

. pk
ek

k 0=

K

.=

X m j+()
Ej 2⁄

j Amax<=

Amax

.=

Y pk
ek 2⁄

k 0=

K

.=

Public-Key Cryptography Page 14

Schroeppel’s Algorithm

corresponding to (A+ipk,B+jpk) also are divisible by pk.
When pk5100, this saves 99 percent of the effort. Since
trial division by the small primes was the most time con-
suming part of the algorithm (Dixon’s, CF, or Schroep-
pel’s), this is a major advance. There are efficient
algorithms to locate the first residue divisible by each
prime pk, but that is a fine point we shall skip.

Sieving reduces the effort to obtain K equations to

1 = K Pr–1(success) (48)

The sum can be approximated by an integral which evalu-
ates to less than O(ln(K)) and can thus be neglected. Since
_ is still 1/2,

1 = L(`)L[1/(4`)]= L[`+1/(4`)] (49)

Optimizing, we find `* = 1/2 and 1 = L(1). We need to
check that the time to solve the K equations does not dom-
inate the effort. If we use Gaussian elimination,
K3=L(3`*)=L(1.5) and does dominate. Using sparse
matrix techniques, the time drops to K2=L(2`*)=L(1), the
same as to obtain the equations. While solving the equa-
tions is asymptotically as difficult as solving them, accord-
ing to Schroeppel, this is not true for problems of current
interest where n is 100 to 1000 bits long.

Since , sieving effectively
cuts the length of n in half by halving k. Consequently, if
an algorithm without sieving can factor a 128-bit number,
if sieving can be used with the algorithm, it can factor
approximately 256-bit numbers. As shown above,
Schroeppel’s algorithm allows sieving. No one has found a
way to apply sieving to the CF method. Hence Schroep-
pel’s attempt to factor F8 when CF could factor F7, a num-
ber half as large.

5.4 Extension to Discrete Logarithms
The COS paper already referenced (Coppersmith, Odlyzko
and Schroeppel) extended Schroeppel’s factoring algo-
rithm to compute discrete logarithms.1 In addition to find-
ing the discrete logarithms {/k}k=1

K of the conventional
primes {2,3,. . .pK}, they also find /0=log(–1) and
{pj=log(-m+j)} where j ranges from –Amax to +Amax. For
example, equations (38) and (39) yield the equations:

2p-1 = /0 + 6/1 + /2 + /3 % 197208 (50)

1 pk⁄
k 1=

K

-

1 exp k nlog() nloglog=

p-2 + p2 = /0 + /4 + /5 % 197208 (51)

Once we have slightly more than K+2+2Amax successes,
we are able to solve for the logs of all the “primes”
involved: {/k}k=0

K and {pj}. The next part is tricky
because the technique of section 4.0 produces y' values
which are O(n) instead of O(n1/2), which is what we need
if we are to get k=1 in as the effort
required. COS explain how to handle this problem in
detail in section 6 of their paper. I will only summarize the
key idea.

As in section 4.0, generate y' = y_k %p until y' is “rela-
tively smooth,” that is smooth wrt a larger set of primes
{pk}k=1

M. Since the set {pk}k=1
K is the set of small primes,

the new set will be called the set of small and medium
primes. COS use

(52)

Lenstra’s elliptic curve method of factoring is used to
detect when y' is relatively smooth because its running
time to do this is exp[2 ln(pM) lnln(pM)]1/2. While the run-
time of Lenstra’s algorithm is the same as Schroeppel’s (or
the soon-to-be -discussed quadratic sieve) when n, the
number to be factored, is the product of two primes, each
of approximately size n1/2, it is much faster when the
prime factors are more unevenly distributed. In particular,
here we are looking for y' such that it has a number of
prime factors all less than pM, which is much less than p1/2.
Hence, Lenstra’s algorithm is only run long enough to fac-
tor y' if it is relatively smooth. If it has not factored y' by
that time, its factorization is of no interest and may be
abandoned.

Thus, after a reasonable time, COS obtain a y' which is the
product of small and medium size primes. We already
know the discrete logs of the small primes, but need to find
those of the medium primes involved. To do this they
invoke a clever trick which allows the discrete log of any

1. Here’s what really happened. Coppersmith and Odlyzko fig-
ured out how to extend Schroeppel’s factoring algorithm to dis-
crete logs. They called Schroeppel, and he said “Doesn’t
everyone already know that?” [Answer: No. I certainly didn’t!
Nor presumably did Adleman, who extended Dixon’s algorithm
to logs, but did not mention the possibility of extending Schroep-
pel’s, with its much better performance.] Coppersmith and Odlyz-
ko then added Schroeppel as a coauthor. Even though Schroeppel
seems to have an aversion to publishing, this is how he came to
“publish” a paper.

exp k nlog() nloglog

pM exp 4 plog() ploglog()=

Public-Key Cryptography Page 15

Quadratic Sieve

medium size number (including each of the medium sized
primes involved in the factorization of y') to be found rap-
idly enough that this time does not change the asymptotic
form of the run-time. This trick is clever, but complicated,
so I refer you to the original paper for details.

6.0 Quadratic Sieve

The quadratic sieve (QS) factors a composite number n in
 steps, the same as Schroeppel’s al-

gorithm. Schroeppel’s came first and the father of the QS,
Prof. Carl Pomerance, gives credit where it is due by not-
ing: “The QS can also be viewed as a natural outgrowth of
Schroeppel’s algorithm.” Yet, much of the literature I have
seen overlooks this parentage.

We have already seen the QS in the very beginning of sec-
tion 5.2. I just didn’t tell you that’s what it was. It is the
algorithm which uses (m+A)2–n as the residues tested for
smoothness. We already showed that these residues are
O(n1/2) instead of O(n), so we only need to show that siev-
ing is possible to establish the claimed run-time. Because

(m+A+pk)2–n = [(m+A)2–n] + 2pk(m+A) (53)

if (m+A)2–n is divisible by pk, then so is (m+A+pk)2–n.
That is the essence of the proof!

For evidence of this truth, examine the tables at the bottom
of page 11 and the top of page 12. Note that 2 appears as a
factor in the residues corresponding to A = –3, –1, 1, and
3. Equation (46) shows that all odd values of A will have 2
as a factor if one does. And it goes further. Because 24=16
is a factor when A = 1, it will also be a factor whenever A
is of the form 16i+1. Similarly, because 23 is a factor when
A = ±3, it will also be a factor for all A of the form 8i±3.

This last point demonstrates that a prime or a power of a
prime (8=23 in the above example) can divide more than
one sequence of A’s and lead to a practical improvement
(as opposed to changing the asymptotic form). This is
because most smooth numbers are divisible by higher
powers of the first few primes. For example, the first three
numbers greater than 9000 that are smooth wrt 50, are
9009=327111113, 9016=237223, and 9020=225111141.
But, if 2 and 3 are restricted to occur to at most the first
power, then 9025 = 5241 is the first to be smooth wrt 50,
and even it is divisible by 52.

If no sequences of A’s are divisible by 23, then n is likely to

exp nlog() nloglog

be harder to factor than if (as for 197209) two sequences
of such A’s exist. Three sequences divisible by 23 would be
even better. Hence, some numbers will be easier to factor
than others. This might not seem to help when we are
given a particular n to factor, until it is realized that we can
use the QS to factor kn where k is a small multiplier.
Because the QS does not favor small factors, it is as likely
to find p or q as the small multiplier. While a few extra
quadratic congruences are needed, this does not change
the run-time even by 1 percent for the range of numbers of
usual interest. So, before running the QS, a search is usu-
ally done over small values of k until a value kn is found
with a larger than average number of sequences divisible
by higher powers of the very small primes. (I will not go
into how to do that, but there are fast methods.)

7.0 Elliptic Curves

In 1985, H. W. Lenstra, Jr. introduced a new factoring
method based on elliptic curves (EC). Its running time to
find a factor p is exp[2 ln(p) lnln(p)]1/2. If n = pq with p and
q both near n1/2, then this is L(1) = exp[ln(n) lnln(n)]1/2, the
same as for Schroeppel’s algorithm or QS. Random com-
posite numbers usually break up more unevenly, for exam-
ple p5n1/3 and q5n2/3, in which case the running time would
be cut to exp[(2/3)ln(n) lnln(n)]1/2 = L[(2/3)1/2].

For this reason, an RSA key generator would avoid
unequal size factors and pick ln(p)5ln(q) (but not too close
because of Fermat’s method which searches over p–q).
While this ability to choose n at will in an RSA system
makes the EC method of little use there, as noted in sec-
tion 5.4, it is useful in finding discrete logarithms (in the
part where we had to find if y' was relatively smooth) and
in many other problems.

I will provide only a brief outline of how and why the EC
method works. If you want to learn more, Stephens’ paper
in the 1985 Crypto proceedings (pp. 409-416) provides a
starting point.

The key idea here, as with many other algorithms, is that
computations mod-n preserve the answer mod-p, provided
that p is a factor of n. For example, if n=15 and p=5, then
34 %5 = (34 %15) %5 because, whenever we subtract or
add a multiple of 15 in mod-15 arithmetic, we also sub-
tract or add three times that multiple of 5. Hence the
answer mod-5 is not affected. This is helpful because, in
factoring n, we know n but not p.

This idea was used in section 3.3 and all succeeding sec-

Public-Key Cryptography Page 16

Elliptic Curves

tions which make use of the value of finding x2=y2 %n. For
then x2=y2 %p � x=±y %p � either (x+y) or (x–y) is a
multiple of p and GCD(x±y, n) is likely to be p.

Before describing Lenstra’s EC algorithm, it is necessary
to consider an earlier factoring algorithm due to Pollard,
known as Pollard’s p–1 method (to distinguish it from Pol-
lard’s l or Monte Carlo method, which we will look at
briefly in seciton 9.0).

7.1 Pollard’s p–1 Method
This method of factoring is extremely rapid if p–1 has only
small prime factors. RSA key generators often avoid such
values of p and q for this reason, but the method is still of
interest for naturally occurring numbers, where there is a
chance p will be of this form. It is also of interest because of
its connection to Lenstra’s EC factoring algorithm.

Theorem: If n =pq and p–1 is smooth wrt pK while q–1 is
not, then GCD(aE–1,n) = p for most a provided

(54)

. (55)

Proof: As with many other important results, the founda-
tion lies in Fermat’s Theorem: ap–1=1%p so that (ak(p–1)–1)
is a multiple of p. Because E is guaranteed to be a multiple
of p–1 but not of q–1, aE–1 will be a multiple of p but
probably not of q. I say “probably” because a might be of
low order in GF(q), but that has low probability.§

The proof is so simple that a small example helps to make
it believable: You are told that n = 402,257 is the product
of two primes, p and q, and that p–1 is smooth wrt 5. Take

E = 21831158 = (262,144) × (177,147) × (390,625)

= 18,139,852,800,000,000.

E is a multiple of p–1 because 219, 312 and 59 are each
greater than n. Note that here, where three primes are used,
E is approximately n3. In general, when pK is the upper
bound on the factors of p–1, E will be approximately nK.

Using a=2, we find 2E%n = 397,062 and Euclid’s algo-
rithm rapidly finds GCD(397062–1, 402257) = 433. The
other factor of n is then found to be 929.

E pk
ck

k 1=

K

.=

ck nlog() pklog()⁄=

Now we can see why the method works: p–1 = 432 = 2433

divides E = 21831158 while q–1 = 928 = 2529 does not.
Hence 2E%p =1 but 2E%q does not, so p divides 2E–1, but
q does not. While we do not know p and therefore cannot
work in mod-p arithmetic, mod-n is just as good since it
preserves arithmetic mod-p. We also rely on the fact that
2E%n

• can be computed rapidly, in at most 2log2(E) multipli-
cations mod-n

• is a reasonable size. (In normal arithmetic 2E would
have been 2,000 terrabytes long for this small example.)

7.2 Analysis of Pollard’s p–1 Method
While Pollard’s p–1 method only factors a small subset of
integers, we can assign it a figure of merit based on the ex-
pected effort required to factor an integer near n. For ap-
plication to the RSA system, we assume the number to be
factored is composed of two approximately equal-sized,
randomly chosen prime factors. We further assume that the
probability that p –1 is smooth wrt pK is the same as the
probability that a random number of the same size is
smooth. There is ample experimental, but little theoretical,
justification for this latter assumption.

Since pK is a parameter that can be chosen by the cryptan-
alyst to minimize his expected effort, we optimize over it,
just as in section 3.5. Letting 1 denote the expected effort,

1 � [ln(E) ln(n) + ln2(n)]Pr–1(success)

because
• ln(E) is the number of multiplications mod-n required

to compute 2E%n.
• ln(n) is the effort per multiplication mod-n. (Really

ln(n)lnln(n) due to the FFT, but even ln(n) will be neg-
ligible.)

• ln2(n) is the (negligible) time to run Euclid’s algorithm.
• Pr–1(success) is the expected number of trials before ex-

pecting to achieve one success (factor a number near n).

Since E � nK

1 � K ln2(n) Pr–1(success) (56)

Using the approach and terminology of section 3.6, and
again letting pK � K = L(`),

Public-Key Cryptography Page 17

Number Field Sieves

1 = L(`) L[1/(4`)] (57)

_=1/2 because the number which has to be smooth is
(p–1)5n1/2. Equation (57) is identical to (53), so after opti-
mization, the expected effort is L(1) or

(58)

the same as for Schroeppel’s algorithm or QS.

While Pollard’s method might at first appear to be compa-
rable with Schroeppel or QS, it has a major difference.
Here 1 is only an expected value. We do very little effort
trying to factor each number n, and have a very small
probability of factoring it. If we need to factor a specific n,
this is inferior to Schroeppel or QS where n is factored
with probability close to 1. (Removing that inferiority is
the genius behind Lenstra’s elliptic curve (EC) method,
discussed next.) This disadvantage of Pollard’s method is
also an advantage if viewed from another angle. Suppose
Pr(success) = 1E-3 and 1 = 1E3 years on the computer
available to us. If run for one year, Pollard’s method has a
10-3 chance of success, while Schroeppel or QS has an
infinitesmal chance of success. (The probability of finding
a dependence relation in K/1000 random binary vectors of
length K is almost zero. When K = 1,000,000, this proba-
bility is upper bounded by 2-999,000 = 10-300,729, much
smaller than the 10-3 Pr(success) for Pollard’s method.)

7.3 Extension to Elliptic Curves
In Pollard’s p–1 method, xi = _xi–1 defines a useful recur-
rence relation because
• the period is either p–1 or a submultiple thereof.
• xi can be computed in time proportional to a polynomial

in ln(i). Hence we can take E to be the huge number
specified in (54) and (55).

Elliptic curves mod-p are a recurrence relation on pairs of
integers x = (x1,x2) with the following properties:

• for a fixed p, there are many elliptic curves, correspond-
ing to the choice of two parameters a and b in the re-
currence relation.

• if a and b are chosen randomly, the period is well mod-
eled as a U(p–2p1/2, p+2p1/2) random variable.

• the i th point on an elliptic curve mod-p can be computed
in time proportional to a polynomial in ln(i).

1 exp nlog() nloglog�

Elliptic curves have all the properties which made Pol-
lard’s p–1 method have 1 = L(1) as its expected effort so,
by varying a and b with n fixed, elliptic curves give us
many chances to factor a fixed n = pq with effort 1 = L(1).
Instead of having just one chance to factor n, and having to
average over many values of n, elliptic curves give us
many independent chances to factor n, each with the same
effort and probability of success as Pollard’s p–1 method.

8.0 Number Field Sieves

Number field sieves (NFS) are a new method of factoring
based on algebraic number fields. This method, developed
in 1990 by Lenstra, Lenstra, Manasse and Pollard, has the
distinction of being the first to break the L(k) bound. Its ef-
fort to factor a number n is of the form

1 = exp{c [ln(n)]1/3[lnln(n)]2/3} (59)

The NFS was first applied to factoring the ninth Fermat
number F9 = 2512 + 1. For numbers of this form (rs+e with
r and e not too large), the NFS is much faster than in gen-
eral. The “special” NFS has c = 1.526, while the general
NFS has c = 1.902.

Because of the larger value of c, NFS does not provide any
savings over QS until n 52512. Factoring a 256-bit number
with NFS will actually be slower than with QS. But, just
as factoring went from c=21/2 for CF to c=1 for QS, pru-
dence would dictate assuming that improvements to NFS
will reduce c.

While the progress over the last five years has been slow,
cutting c for the general NFS from its intial value of 2.080
to 1.902 today, if c can be reduced to 1, an RSA system
would need at least a 4000 bit and preferably an 8000 bit
key size as seen from the table below. These developments
emphasize a point I have made repeatedly: Safety margins
of at least a factor of 2, and preferably 4 or greater, are
prudent when setting key size. While also true for conven-
tional systems, such as DES, this is particularly for public
key systems because their greater mathematical structure
is likely to admit greater mathematical insight.

Method 2512 21024 22048 24096 28192

QS 7E19 4E29 1E44 2E65 2E96
NFS c=2 1E20 1E27 4E36 1E48 2E65
NFS c=1 1E10 4E13 2E18 3E24 4E32

I will distribute other notes and papers on the NFS.

Public-Key Cryptography Page 18

Pollard’s r Method

9.0 Pollard’s l Method

Pollard’s l method grows out of the “birthday problem,”
which states that, if approximately p1/2 random values are
chosen mod-p, then an overlap becomes highly likely. (This
is more evidence in favor of my statement earlier in the
quarter that a significant fraction of the important results in
cryptography stem from the birthday problem!) This meth-
od is sometimes also called “Monte-Carlo” factoring be-
cause of the randomness involved.

The l appellation applies because a many-to-one recur-
rence relation on a finite set must eventually cycle and is
therefore be shaped like a l. For example, the mapping

xi+1 = xi
2+1 % p (60)

with p=29 and x0=15 produces the sequence 15, 23, 8, 7,
21, 7, 21, 7, etc. as depicted in the following picture:

Normally there will be many more points, and the l can be
made much smoother.

While there is no proof that (60) can be modeled as if it
were random, experiments show that is a good model. In
particular, the average time before (60) cycles is approxi-
mately p1/2 for most values of p. There is nothing special
about x2+1%p and any other pseudo-random, many-to-one
mapping mod-p would also work.

Of course, in factoring n we do not know p, so the recur-
rence must be computed mod-n. But that preserves the
result mod-p. For example, if n=28913=29×997, and
x0=15 then the xi sequence will start: 15, 226, 22164,
11027, 15565, 7199, 13506, 28833, 6401, 3081, 9098.
While this has not yet cycled, it has cycled modulo the
unknown factor 29, where the sequence is as before: 15,
23, 8, 7, 21, 7, 21, 7, 21, 7, 21. Because the other factor of
n is so much larger, we do not expect that the sequence has
started to cycle modulo-997, and it has not as shown in
Table 2 below.

Because the period of the recurrence relation mod-29 is
two, xi+2 –xi will be a multiple of 29 once we are in the
loop, and GCD(xi+2 –xi ,n) = 29. For example, 9098–6401

15
23

8
7 21

= 2697 = 29×93, so GCD(2697,28913) = 29.

In this example we knew the period mod-p was two, but in
real life we will only know that the period is O(p1/2).
Therefore, if we suspect that n has a factor p which is less
than P, we can compute xm for m = 5P1/2, or any other
value which is not too large but which is likely to be out of
the “tail” and into the “loop” of the l in mod-p arithmetic.

Table 2. Pollard’s l Method: n=28913=29×997

Then compute

X = % n (61)

Again the factor of 5 is typical, not a hard and fast rule. If
we are right that the tail and loop are each less than 5P1/2

in mod-p arithmetic, then at least one of the terms
(xm+i–xm) will equal zero mod-p and X will be divisible by
p. Hence GCD(X, n) will equal p. It is seen that the effort
required is O(p1/2) so that Pollard’s l method typically
finds the smallest prime divisor of n first. Because p1/2

grows so rapidly, this method is only useful for finding
moderate-sized prime divisors of n. However, it extends
our ability to find small prime divisors compared to trial
division, whose complexity grows proportionately to p.

As evidence of the value of Pollard’s l method, it is worth
noting that Schroeppel developed his algorithm in an effort
to factor F8 = 2256+1, but was beaten to the punch by Brent
using Pollard’s l method! This was somewhat surprising
because, in the worst case, the l method requires an expo-
nential number of operations, O(n1/4), to factor n. The only
reason it worked on F8 is that F8 is a 78 digit number

x%28913 x%29 x%997
226 23 226

 22164 8 230
 11027 7 60
 15565 21 610
 719 7 220
 13506 21 545
 28833 7 917
 6401 21 419
 3081 7 90
 9098 21 125

xm i+ xm<()
i 1=

5 P

.

Public-Key Cryptography Page 19

Floyd’s Cycle Finder

which breaks very unevenly into a 16 digit factor
(1238926361552897) and a 62 digit factor
(9346163971535797776916355819960689658405123754
1638188580280321). Hence the effort of Pollard’s l
method was only O(108).

Whenever it is suspected or hoped that n splits into such
unequally sized factors, Lenstra’s EC method described in
section 7.3 should be used instead of Pollard’s l method.
(The EC method had not yet been developed when Brent
tried to factor F8.) If used on a carefully chosen RSA n of
78 digits with two roughly equal length factors, Pollard’s l
method would require O(1039) operations and be clearly
infeasible, while Lenstra’s EC method requires only
O(1013) operations.

As evidence of the efficacy of the EC method, I factored F8
in only two hours on my NeXT workstation (25 MHz
68040 processor) using Mathematica. Pretending I did not
know the answer, I ran the program for one hour with an
estimate of 1010 for the smaller factor. When that failed, I
increased the estimate to 1020, ran for another hour, and
achieved success. See Knuth, volume 2, 2nd edition, pages
369-371 for more details on Pollard’s l method.

10.0 Floyd’s Cycle Finder

Floyd’s cycle finding algorithm is extremely useful in cryp-
tography, including in factoring algorithms that ned to find
a repeat in a finite sequence. (Floyd is Prof. Robert Floyd of
our own CS department.)

Given a recurrence relation xi=f(xi–1) on a finite set, it is
clear that the x values must eventually repeat. Often the
problem is stated in terms of halting a finite-state, pseudo-
random number generator before it starts to cycle. The
problem solved so elegantly by Floyd is to detect when
cycling first happens, using only a few words of memory
and just several times the computation needed just to reach
the point of cycling.

Floyd showed that if we define the auxiliary sequence
yi=f[f(yi–1)] and stop the process at the first N for which
xN=yN then it is guaranteed that the {xi} sequence has not
yet repeated. Conversely, Floyd’s algorithm finds two
equal x values, xN and x2N, with at most three times the
number of iterations required to start cycling and with only
two words of memory. See Knuth, vol 2, 2nd edition, page
4, for the proof that it really works.

