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This paper lays a foundation for the theory of hypothesis testing
with finite memory by solving the following problem under a finite memory
constraint. Let Xl,X ,... be a sequence of independent, identically
distributed random variables drawn according to a probability measure
$. The problem is to decide between the two simple hypotheses ¢ = ?0
and 9 = ?1. The Xi's are observed sequentially and a new decision
must be formulated after each observation. It may be shown that any
rule that minimiées the probability of error requires infinite memory
(in the nondegenerate case), even if sufficient statistics are utilized.
Motivated by a desire to keep memory finite, let the data be summarized
after each new observation by an m-valued statistic T which is updated
according to the rule Tn = f(Tn_l,Xn), where f may be a randomized
function. Let the decision rule take action d(Tn) at time n. The
ubbjeétiQe is fd find the pair (f,d) which minimizes the asymbtotic prob-
ability of error :P(e) . This algorithm may.be thought of as a finite-
state automatbn, in which the inputs are the observations, the outputs
are the decisions, and the states constitute the memory.

Letting z ;nd £ be the (a.e.) maximum and minimum likelihood

ratios, define 7y = £/f. Furthermore let T and Ty be the a priori
probabilities of the two hypotheses and m be the number of states in

memory. Then it is shown that P¥* is the greatest lower bound for

P(e), where

iiji
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Thus 3t is seen that 7y 1is a measure of-the separation between the two
hypotheses, and that P¥* decreases almost exponentially in m. More-
over, a class of €-optimal automata is demonstrated (i.e., for any € >0
there exists an automaton in this class with P(e) < P¥ + €). It is fur-
ther shown that, except for certain degenerate cases, no machine can ac-
tually achieve P* and that the €-optimal class is essentially unique.
The solution is €-optimal for both the Bayesian and Neyman-Pearson

formulations of the problem.
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Introduction.

Let X be a sequence of independent, identically distributed

1 X0
random observations drawn according to a probability measure ? defined

on an arbitrary probability space. Consider the simple hypothesis test-

ing problem

Let the prior probabilities of the null hypothesis HO and the alterna-

tive hypothesis H1 be denoted by no and ﬁl respectively. The usual
goal is to find a sequence of decision rules dl(xl)’ d2(X1,X2),... which
minimizes the asymptotic probability of error P(e). (Although a Bayesian
formulation will be used for the development in this paper, the results

of the theory apply directly to the Neyman-Pearson formulation in which
the probability of error under Ho is fixed and the probability of error
under H1 i; to be minimized.)

Since dn may depend on (XI,XZ,...,Xn), as n - increases, the
amount of data to be stored increases without bound. Some means of data
reduction may be desirable. Sufficient statistics can sometimes be used
to reduce the required size of memory. When used, such statisties lose
no information. However, as will be shown in the following example,
apparent data reduction is sometimes misleading.

Consider the problem in which X is univariate normally distributed

with variance equal to one. Let ., =% = 1/2. Under H let the

0 1 0’

distribution kave mean yu = +1; and under H1 let the mean yu = -1.

n
A statistic, sufficient for this problem, is Tn= .21 Xi’ where Tn is
. 1=

the value of the statistic after n observations. A simple optimal



decision scheme is for dn to decide H if Tn Z>0 and to decide H

o 1

if Tn < 0. Furthermore, a simple updating scheme is given by

(1)

T =T + X
n n+

n+l 1

Thus Tn contains all tﬁe desired information absut (Xl,Xz,...,Xn), and
only Tn need be remembered. Thus at time n, instead of storing n
real numbers, it is necessary to store only one. This is an apparent
n-fold reduction in the required data.
However, T is real-valued. Thus infinite storage is needed for
jt alone. Furthermore there exist [1] uniformly continuous one~to-one
mappings of Bp onto R, sc that if memory can store one real number
it can store any number of real numbers. -One might think that in spite
of this theoretical lack of reduction of the data, there might be a real
saving in the sense that a truncated version of T would yield écceptable
probability of error. However, here too, T fails. No matter how T is
truncated, the results of this paper show how to construct a better rule.
In order to address the finite memory constraint, consider the famil&
of all learning algorithms of the type

T = (T,

X) @

where Xn is the nth observation, Tn is the state of the memory at
time n, and f is a function (perhaps randomized) , independent of n

and the data. The algorithm is said to have finite memory of length m

if T is m-valued (i.e., Tn e {1,2,...,m} for n =1,2,...). For the
classification problem it will also be necessary to specify a decision
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rule d: {1,2,...,m} —;{Ho, Hl} which takes action d(Tn) at time n.
It will be seen that no randomization of d is required for the optimal
procedures. .However, it is generally true that an €-optimal £ must be
random. By analogy to the previous example, T may be thought of as an
m-valued statistic, and the problem is to find the algorithm for updating
this statistic which loses the least amount of information.

It may also be seen that the pair (f,d) describes a finite-state
machine with inputs Xn and outputs dn = d(Tn), n=1,2,.... The inde-
pendence of the Xi's sets up a Markov process on the state space S =
{1,2,...,m}, as can be seen from the following recasting of the (£,d)
description: The action of £ may be prescribed by a (perhaps infinite)

family of stochastic transition matrices indexed by x,

P(x) = [pij(x)], i,j =1,2,...,m , (3)

o
where jél I&j(x) =1, and pij(x) >0, V i,j,x. Here Pij(x) is the
probability that Tn = j given that Tn—l = i and that Xn = x 1is ob-

served. Taking the expectation over x, it is found that

P(O) =/P(x) d?o(x)
and ) . (4)
p(1) =fP(x) ag, (o)

are the state transition probability matrices under HO and H1 respec-
tively. The stationary or long-run probability distribution on the states

may then be given by



(0) 0) (0) 0
= Gy by ey )

and
L _ @1 @ (1)
E. = (“1 ,pz ,...,lJ.m )
where E(O), E(l) satisfy the matrix equations
(0) _  (0)_(0)
E =p P
and (5

(1 (WD)
g pop

The resulting long-run probability of error is now simply given by

z p(o) +, Z L (6)

P(e) = = ) .
Y ies, 1 1 jes Hi

where Sj ={i: d(i) = Hj}’ j = 0,1, are the decision regions induced
by the decision rule d. Note that the (f,d) description and the
(P(x),d) description are equivalent. In this paper P¥* = %gﬁa P(e)
will be found as a function of m, and an €-optimal class of (£,d)'s
will be demonstrated. (That is, it will be shown that for any € > 0
there exists an (f£,d) in this class whose P(e) S_P* + €,) It will
also be shown that, in general, no optimal (f,d) exists.

Using different methods the time-varying learning with finite

memory algorithm

Tn = f(Tn_l,Xn,n), Tn e {1,2,...,m} . 7
has been shown in Cover [2] to have P¥* = 0, for a memory of size m = 4.
Thus there exist learning rules for a time-varying finite memory which

4



yield asymptotically zero proﬁability of error. No such hope exists in
the time-invariant problem treated here.

Thus solutions exist if the automaton is allowed to be time-varying
or adaptive.[SJ However, a time-varying automaton requires a clock which
can count without bound to keep track of n. Sinée this can only be ap-
proximated in practice, fhis paper will be restriéted to time~invariant
automata. Adaptive automata have additional memory in their variable
structure and so will also be excluded. Thus in this paper the word
automaton or machine will be understood to mean only a time-invariant,
non-adaptive automaton.

Several authors in the Russian literature [4], [5], [6] have inves-
tigated the beﬁavior of autoirata in random media. However, their work
is primarily devoted to the.analysis of the behavior of various ad hoc
machine designs. Moreover, the problem formulations ;re more properly
in the area of the sequential design of experiments (the so-called two-~
armed bandit problem) than in the area of hypothesis testing. This work
is nonétheless interesting because of the similarity of the formalism to
that of the problem considered here. Under an alternative definition of
finite memory (in which the memory may consist solely of the last n ob-
servations) the two-armed bandit problem has been attacked by Robbins [7],
Isbell [8], Smith and Pyke [9], Samuels [10], and Cover []. The hypothe-

sis testing problem under the constraint that the memory be one dimen-

pu—

sional ( a single updatable real number) has been discussed by Spragins
(2] and Fralick [13]. The latter work stimulated work presented here.
As has been mentioned, the states occupied by the automaton form a

Markov chain. Several definitions similar to those used in the theory

. 5.



of Markov chains (e.g., irreducible, ergodic, etc.) are needed and are

given in the Appendix I.



. A Lower Bound for P(e).

There always exists a dominating measure V such that ?0 and Tl
are absolutely continuous with respect to V. (2)-+ Ti is such a measure.)
Thus there exist densities fo(x) and fl(x) which are the respective
Radon-Nikodym derivatives of 90 and 53 with respect to v, and the

ilikelihood ratio (1.r.), 4(x) = fo(x)/fl(x) is well defined on the

extended real line, almost everywhere ?0 + ?1 .

Definition: The almost everywhere (a.e.) least upper bound on the

1.4., ¢, is defined by

9,(8)

4= sup m (8)

?O(A) + ?1(A) >0

Similarly, the a.e. greatest lower bound on the l.r., 4, is defined by

9,
7,® | ®

£ = inf
Tb(A) + TI(A) >0

Remark: For nicely behaved fo,fl, it is seen that 7 and & are

merely the maximum and minimum values of thevlikelihood ratio.

Lemma 1: The ratio of thé probability pgj of transition from state i
to state j under Ho, to the probability pgj of the same tramsition
under Hl’ satisfies the inequality

P '
£< —il <z (10)

Remark: If both pgj and pij are zero, their ratio is undefined.

N



Proof: p?. is equal to [ p, . (x) . (x) dv(x) and P%. is given by the
—_— ij X ij 0 ij

same expression with il substituted for fo. Since fo(x) = z(x)fl(x);

0. Lo, 0 a0 100 @

ij _ %
1 - . (x) fo(x) dv(x)
bl jg'Z P; 5 x) 1, X)

(11)

R

2 ng(X) fl(X) dv (x)

IA

=1

J
z pij(X) fl(X) dv (x)

Similarly, replacing £(x) by its a.e. lower bound &, the other desired

inequality is proved. Q.E.D.

Note that if £ is infinite the proof requires slight modifications.
This will also be true in later theorems, when the parameters involved are
infinite. The modifications are straightforward and are thus deferred to

Appendix 1IV.

It will be recalled that

z p? +n, Z 1

P(e) ==
; 0 ; i 1 5 “i
1§81 | 1eS0

(6)

is to be minimized. For a state ieso is is desired that pg be much

—

larger than p;, and for :i.eS1 it is desired that pg be much smaller
than pi. Therefore to obtain a lower bound on P(e) it would be helpful
to know just how large and how small the state likelihood ratio (s.1l.r.)

pg/pi can be. The following lemma will be useful in solving that. problem:

Lemma 2: For an ergodic automaton in which the s.l.r.'s, pg/p; are ar-

ranged in non-decreasing order the following relation holds:



Remark: Since the automaton'is ergodic the s.l.r. is defined for all

states.

Proof: The lower bound of (12) follows from the assumption that the

state likelihood ratios have been arranged in non-decreasing order. To
establish the upper bound, suppose that the lemma were false. Then for

some ie€S,

0 -
and pj/p§ > ci/h, V.

0,1
u. < c . .
l~LJ/“J— 2/ i>i , (13)

j<i

where c is the value of the state likelihood ratio for state 1i.

Now the automaton is in the steady state (s.s.) so that if it is
broken into t&o nonempty disjoint seté, C and C', where CUC' =8
then the "flow" of probability from C to C' must equal the flow from
C' to C. Consequently the net flow is zero. The ﬁrocess is very simi-
lar to a diffusion process that is in dynamic equilibrium. The ﬁroba-
bility of occupation in state j may be thought of as the population of
state j, and the probability of transiting from state j to state k
is then anélogous to the fraction of state j's population that flows
to state k.

The flow from C to C' is the sum of the flows from each state
in C to each sfate in C'. Similarly the flow from C* to C 1is the.
sum of the individual flows. The flow from a state j to a state Kk,

given that H is the true state of nature, is “gpgk’ and if H1 is

0
the true state, it is p;p;k. Thus, if C ~is set equal to the first 1

states and C' is the last n-i states and flows are equated, first

under Ho and then under Hl’ the following equalities are obtained:



0. o0 0 0

IS ¥ P, = = I u. P.. 14
jeC keC? "3 Tak jeC' keC "5 Pk (142
1 1
T £ u.pP.,.= 2% X ul. pt. . (14b)
3 1 3 t
je€ kec' I ¥ jeor ke I K
But using the inequalities (10) and (13)
0.0 1 1
L X p,p, ST I (ud@Epg) (15)
jeC kect I Y jeC keC' Jk
so that
0 -
_Z z u.pc.’kscz z = ul,pl_ . (16)
jeC kec' 9 J jeC kect J JK
Similarly,
0.0 - -
RS/ an
jeC* keC jec' kec I JE

s

But using (14a) the left sides of (16) and (17) are equal, and using (14b)
the right sides are equal, a contradiction.

Note that the ergodicity of the machine is used in obtaining (17),
for if the machine is not ergodic, there exists a partition of S into
sets C and- C' such that there is no flow from either one to the other.

. 00 ,11 . .
Then none of the ratios pjpak/pjpak used to obtain (17) are defined.
This is not to say that non-ergodic automata have no restrictions

on how fast their s.l.r.'s increase. But a-different sort of condition-

and proof are needed (see Appendix II).

Definition: The spread of an automaton is the ratio of its maximum

s.1.r. to its minimum s.l.r.

10



Theorem 1: The spread of an m state automaton is less than or equal

to 7m—1, where 7 = E(g.

Remark: 7 is a measure of the "separation" between HO and Hl'

2323{: I1f the automaton is ergodic, m-1 aplications of lemma 2 yield
the desired result. If the automaton is not ergodic it is shown in Ap-
pendix II that the theorem still holds. In fact, it is shown that except
in certain degenerate cases the spread is strictly less than 7m—1 in

the non-ergodic case. Since P* is a decreasing function of spread

(see proof of Theorem 2, particularly the effect of changing (20)) non-

ergodic automatacan do no better than ergodic ones.

Theorem 2: For an m-state automaton

rz m-1 -1
d”o”ﬂ . ml To Ty
, 1if r = max\—, —
m-1 T, T
N r -1 1 "0 .
P = ' : (18)

min {vo, ﬂ&}, otherwise

\

v

is a lower bound on P(e), where

y = 8/8 . (19)

Remark: Since Zpg = Zp; =1, not all s.l.r.'s can be greater than one.

Therefore, by Theorem 1, no s.l.r. can be greater than 7m-1. Thus, if
ﬁo > ﬂl and the a priori l.r., ﬂo/hl, is greater than 7m—1’ no ma-

chine provides sufficient information to reverse the a priori decision.

Similar remarks hold if x. < =x

' . m-1
0 1 and ﬂl/ho is greater than 7y . In

either case, no machine is needed since the trivial rule of deciding

11



whichever hypothesis has the larger prior probability achieves the lower bound

T,
min{x ,%.}. Note that 7m-1 = max -9, — V% implies that P¥* = min{x,x },
0’1 ﬂl ﬂo 0’1

in agreement with this heuristic discussion.

m-1 “0 1t1
Remark: If x, ==n, =1/2, 7 > max{—' —> =1, for m> 2, In this
em——— 0 1 7(1 -Jto - .
m-1 m-1

m-1 =
case using (y -1) = (2 + 1) (y 2 - 1), Equation (18) reduces to

1

P¥ = (19)
7,(m n/z
Proof of Theorem 2: If k is the minimum s.l.r., then by Theorem 1
0,1 m-1
k< p /iy <k Vies (20)

Using this equation and letting & be the P(e) wunder H0 and B be

the P(e) under Hl’

Q= Z ug =k X ]J_i = k(l;B) ,
1eSl 1eS1
or a=k@@-B) ; (21)
. 1 _
and p= 2 = (1/k.rm—]:) z p.g ’
.u-:SO 1eso
' 1
or B =z——m—m (1~ . (22)
m—-1
k N
Multiplying (21) and (22) one obtains ’
1 .
8 > 407 (1-a) (1) (23)
7

12



Equivalently

(l’a;gl ) < 1 aso0, B850 (29)

Equation (24) gives a lower boundary for the operating characteristic
(0C) of an automaton. [The OC is the region of achievable (C,B).] Thus
the results of this analysis apply equally well to a Newman~Pearson for-
mulation of the problem since the machines that will be demonstrated in
the next section can approach any point on this lower boundary for the
0C, hot only the point that yields minimum Bayes' risk.

To return to the Bayesian approach,:note that the left side of (24)

decreases in both & and fB. Therefore, ﬂoa + ﬂIB will be a minimum

when the inequality in (24) is replaced with an equality.
Given Ty nl, and 7, minimize noa + 115 subject to the

constraint given by (23) with equality used instead of the weak inequality.

This is a problem in the calculus of variations and may be solved using

. Lagrangian multipliers. Expressed in a form useful for this method, (23)

becomes

1L-a-p + as(1-7m-1) =0 (25)

Defining the Lagrangian

~

o+ ﬂla + AL -a-8 +op1- 7m—

1

J@,p) =« )1 (26)

and setting the partials with respect to Q and B equal to zero,

13



J -1 :
%& =Tg + AM-1 o+ B(l-*r'm )1=0
27
J -
% =T + A-1 + oy 1)] =0
are obtained.
Solving (27) for a ard B yields
Ty To_,
A
a=S— ., B=Th (28)
y -1 r 1

Then, substituting the expressions in (28) into the constraint equation,

(24) results in

A=4Y—— (29)

5
[

Tﬁus the values of O and P which extremize noa + ﬂlﬁ' are obtained

by using this value of A, and are given by

T
1 m-1 -1 _g 7m—1 -1
Ito 1(1
* = * =
V4 -1 v4 -1
The resulting extreme is
‘ 2 Jﬂoﬁl L
P*(e) = (31)
m-1
V4 -1

14



As in all such problems it must be checked that P¥(e) is a local minimum

m—1 T T
not a local maximum. If 7 > max g;—, E—% , P¥(e) 1is both a local
: _ 1 O)x T,
and global minimum, whereas if 7m < max z-—u E—; one of the endpoints
1 0] .

(either a =0,8 =1 or 8 =0, & =1) is the global minimum. Thus

p¥ as given by (18) is a lower bound on P(e).

15



A Class of e€-Optimal Automata.

Noﬁ that a lower bound P¥* exists on P(e), the rather important
question arises as to whether or not it is tight. That is, does there
exist a machine which achieves the lower bound? If not, how closely can
it be approached? As will be shown in the next séction, in general no
machine can actually achieve P*¥, However, as wiil be shown below, P¥
can be approached arbitrarily closely.

As a first step consider the special case where X 1is a Bernoulli
random variable. In this case X can take on only two values, denoted
by H (heads) and T (tails). .Under the null hypothesis Ho.

Pr{X = H)

p, 0<p<1. Under the alternative hypothesis Hl’
Pr{X = H} = q = 1-p. Without loss of generality it can be assumed that
P> %. Thus a large number of H's ‘tend to favor Ho, while a large

number of T's favors AH1.

1f, for the moment, equal priors are assumed, then knowledge of the
difference between the number of heads and the number of tails is suffi-
cient for an optimal decision. If the difference is positive, decide

H_ : if the difference is negative, decide H and if the difference is

0’ X

zero, the decision is arbitrary.

. An infinite-state automaton could be used to implement such a
scheme. Let the states be numbered with Ell the integers (both positive
and negative). If at a particular tiﬁe the automaton is iﬁ state j,

it is interpreted as meaning that up to that time there have been j

more H's than T's. Thus at time zero. (before any observations have

occurred) the machine is in state 0. If the first observation, Xl,

is an H, the machine moves to state 1; if X isa T, the machine

1

16



moves to state -1. It is easf to see that if the machine is in state i
and the new observation is an H, it moves to state i + 1, whereas if
the new observation is a T it moves to state i - 1.

The decision rule decides H0 in states 1,2,... and H1 in states
-1, -2,.... In state O it may make either decision.

This automaton is eséentially a counter, capable of counting to plus
and minus infinity. One way to make the memory of the algorithm finite
is to allow the counter to count only up to a fixed upper bound and down
to a fixed lower bound. If the counter reaches its upper bound and another
H is observed, let it stay in the same state (i.e., its upper bound) .
Similarly, if a T is observed while the automaton is in its lowest num-
bered state, lét it stay there. The cbunter saturates, and Qence will be
called a saturable counter. AIt is depicted in Fig. 1, where an arrow from
one state to another indicates an allowed transition ;nd the letter H or

T over the arrow indicates for which observation the transition occurs.

It should also be noted that the states have been numbered from 1 through m.

STATE | 2 3 -..m-2 m=1 m

' H H H H H H

IO e e s e o $1
. T T T T T T

Fig. 1. SATURABLE COUNTER.

As was noted previously, it is possible to use the theory of Markov
chains to solve for E? and E}’ the s.s. probabilitybof occupation
vectors under HO and H1 respectively. Feller describes a method of

solution using generating functions [14].

17



A simpler method will be used. This method makes an analogy to a
diffusion process,'as was done in the broof of Lemma 2. Since the Markov
chain is assumed to be in the s.s., if it is broken into two subsets,
then thérflow from the first set to the second must equal the flow from
the second to the first, so that the net flow is zero. If the first set

is {1,2,...,i} and the second set is (i +1, i + 2,...,m}, then this

condition results in the equations

0 0o 1 T,
by = /DK 5 Ky, = @My s 1=1,2,... 0 (32)

Thus the stationary distributions of the states are given by

0 i-1 1
By = a(p/) ™, W

11 .
i = b(q/'p_)1 , i=1,2,...,m, (32a)

where a is a normalizing constant such that the sum of the pg's equals
one, and b is a similar normalizing constant for the pi's. These

equations are depicted graphically in Fig. 2.

E

] 1 I | | s
| 2 3 eeem2m-i m STATE (i)

Fig. 2. DISTRIBUTION ON TEE AUTOMATON'S STATES.

18



If m =2k and it is still assumed that the priors are equal,
then the best partition of the states is to let SO’ the set of states
in which the automaton decides HO’ be the set {k + 1, k + 2,...,m}
and to let S1 = {1,2,...,k}. Since the priors are equal and the machine

is symmetric in the two hypotheses (see Figs. 1 and 2), & and f are

equal, so that the P(e) =Q

B. Using the fact that the sum of the

0, .
uy's 1is ome:

m/2
x

0] : m/2
T 1-(p/a)
0 i=1 > a(iiiﬁéai""")

o= Z Hy = = (33)

m m
ies. . 0 1-(p/9)
! St a(;—(péq) )

and thus

i

/™2 + 1

P(e) = (34)

Since it has been assumed (without loss of generality) that p > q, for
large m the P(e) decreases almost as (q/p)m/z.

The saturable counter is the obvious restriction of the infinite
counter when a finite memory constraint is imposed. However, with a
slight modification the saturable counter can be improved, approximately
doubling the effective memory. Looking at Fig. 2 it is seen that states
1 and m, the extreme states, are the ones in which the automaton is
least likely to make an error. It would be nice if all probability were
on these two states. That is, pi (meaning both pg and p;) and o
would be non-zero and all other By would equal zero. This results in

a non-ergodic automaton. However, it is possible, with an ergodic autom-

aton, to approach this extreme as closely as desired by introducing
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artificial randomization. The general form of the saturable counter is
kept. However, if the automaton is in state 1 and the next observation
is an H, 1let it pass to state 2 with small probability &, and remain
in state 1 with probability 1-5 (%Pﬁﬁead of passing to state 2 with
conditional probability one as it did in the original design).. If the
observation is a T which provides additional evidence'that H1 is
correct, let the automaton remain in state 1 as it did before. It is
seen that the effect of this randomization is to "trap" the automaton
iﬂ-state 1. Thus it will be referred tg as a d-trap.

Similarly, it is desired to trap the automaton in state m. So if
the automaton is in state m and the new observation is a T, it tran-
sits to state' m-1 with small probability k8. The reason for adding
the factor of k is to alléw the automaton to be unsymmetric if the
priors are not equal, since at this point the assumption of equal priors
will be dropped. The addition of this factor allows the machine to

match its structure to the statistics of the problem. Thus Kk will be

referred to as a matching section.

If the resultant Markov chain is solved, it is found that (32) still
holds for i = 2,3,...,m-2. since the chain is unchanged for states 2
through m-1. However, the effect of the d traps in the end states is
to increase By -relative to Ho by a factor of 1/8 and to increase
B by a factor of 1/kd relative to Mot Thus the following table

exhibits E..O and Elz
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State i

state 1 2 3 e m-1 m

0 . . . 2 m-2 m-1
by a'/s  a'(p/a) a'(p/a) .e.a'(p/a) (a'/k8)(p/q)

: ) .
i bps b/ b/’ .. bia/m™ /e a/m™

Again a' and b' éfe néfméiizing constants. Now if k 1is fixed and

D approaches zero, pl and “m are much larger than all other ui-

Thus the probability of being in state 1 or m approaches 1 as 5 ap-

proaches 0. Of course O can never reach zero or the chain becomes non-

ergodic, and then P¥* is not even approachable. In fact, when O equals

zero, Appendix iI shows that P(e) is as large as when O equals 1, the

deterministic case considered previously. This example illustrates that

g 1is not a continuous function of [pij]' Consequently the associated

P(e) is not a continuous function of [pij]. Thus the P(e) of non-

ergodic machines is not obtainable as the limit of the P(e) or ergodic

machines. This necessitates a separate argument in Appendix II to dispose

of the nonergodic case. The ergodic machines are shown‘to bé suﬁefior.
However, if © is allowed to approach, but not reach, zero, P(e)

will approacﬁ noug + nlu;, since all other .“i approach zero. This

limit of P(e) will be denoted by Plim' As Plim is.approached, it

is seen that & approaches ug and P approaches p;. Labelling

these limits Qyim and Blim and realizing that in the limit

Hy + By = 1 (since all other By approaches zero), it is seen’that

k : 1

==, B, =—— (35)
k+(p/Q)" 1 1im 1+k(p/a)" !

-

alim
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so that

a- alinp(l - BlimL) 2 (m-1) _ m-1

= (p/a) y ~(36)

alim Blim

where in this special case 2 = (p/q) and Z = (a/p). But (36) is just

condition (24) which put a lower bound on & and PB. Thus, for a given

k, the 0. and B.. that result cannot be lowered. Since, as Kk
lim lim

varies from zero to infinity, alim varies from zero to one, the satu-

rable counter with O traps and matching section traces out the lower

boundary of the allowable ROC's (in the limit as ® goes to zero).

Thus in the limit as O goes to zero, this automaton with k properly

chosen approaches the lower bound on P(e) as derived in Theorem 2,

The optimum value of k is obtaineq by differentiation and is given by

" ‘
m-1
V¥ /Mol o To Ty
y 1f y > max {—, %w
’1, m-1 _ 1 0
. ¥ \ﬁil;'"o
kKW = ‘
<0 o oml__ [To ™M (37
y if =max(—, — fand T, >T
Wl WO 0 1
i f m-1 _ Wo Wl
LN, 1 'g = max 11‘_1’-1T_;) and 1T0<1Tl

As has been noted, this automaton cannot achieve P*, but rather
can only approach P* in the 1imit. That is, for any € > 0 there
exists a O > 0 such that the saturable counter with & traps of this
value and with matching section k = k* has its P(e) < p* + €. Thus
this class—;; machines is termed e-optimal.

It has been shown that the saturable counter with ® traps and

matching section can be made e-optimal for the special case where X
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is a Bernoulli random variable with parameter either D (under HO)
or q = 1-p (under Hl). This result is eaéily extended to the case
where X is still a Bernoulli random variable, but with p = Pg (under

H) and p=0p

b (under Hl). Without loss of generality it can be

1

assumed that Pg > p1 so that more H's will result under H0 than

under Hl' However, it is possible for both pb and p1 to be greater

than so that at first the saturable counter would seem to be of

1

2

little use since, under either hypothesis, the machine would be in the

right half (states (m/2) + 1 through m) more often. A similar problem
L ,

exists if p0 and p1 are both less than 3 However, if the O traps

and matching sections are added, it is possible to overcome this apparent

shortcoming. Again, in the limit as ® goes to zero, (Q approaches

0 1 . .
alim = My and B approaches Blim = M. Sélutlon of the Markov chain
first under Ho and then under H1 yields

oy = k 5 1
im = m-1 lim = m-1 (38)
k+(py/q,) 1+k(a,/p;)
Consequently
- m-1
(l-aiim)(l_ﬁlim) _ qul _ Ymrl (39)
(@) 5 Byin) 9P

since ¥ = (E/&), where, in this problem, 1 = (po/pl) and
As is seen by (38) as k is varied from zero to infinity ..

and Blim run from zero to one, and from one to zero, respectively.

Here too the machines trace out the lower boundary of the ROC (again,
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in the limit), so that for the proper value of k, this is an e-optimal

class of machines. The optimum value of k is given by:

r m-1 _ m-1
T17o Tol1 1. To M1
— y if vy > max ( —, p—
(’ITO—‘ITl) + (TO Ty ) o1 d1r "o
m-1
(ror1?
Kk =< ) S ' (40)
0, if Tm—l < max —9, 2 and T, >T
T,y T 0 1
1 0
v (i
. m-1 0 1
0, if ¥ = max ;r—;, T—T;} and T, <,

* . .
where 70 = (po/qo) and 7, = (pl/q;). The resultant P~ is given by:

2T AT *rm_l 1 :
: V7™ "
P,. = ) =P (41)

T -1

(po a,
where 1y = .

P; 99

Now it is possible by a simple extension to demonstrate a class of

¢-optimal machines for the original, more general, problem. As is

0
obvious from the method used to solve the Markov chains for u  and

E}’ it is only the ratio of the probability of moving from state i
to state i+l to the probability of moving from state i+l to i that
determines p. Thus if there are three possible outcomes for the experi-

ment, say heads, tails and sides (abbreviated S), and if under H0 the

probabilities of these occurrences are po, q0 and r0 respectively

(p0+q0+r0 = 1), and under H1 they are Py q1 and ry (these also

sum to one) then if the automaton moves one state to the right on H,

24



one state to the left on T and remains in the same state on §, then
P(e) is still given by (41).

Now returning to the general problem consider the following sets:
H={x:oa)=20}, T={x:0x)=4} and 8= {x:x¢H andx¢7T}.
For the moment asgume Pr{H} > 0 and ‘Pr{ff} > 0 (under either hypotﬁe—
sis). Later this assumption will be dropped; Define a new "'saturable
counter” as follows: whenever an x € § is observed, the automaton
moves up one state (unless it is in the highest state,in which case
it stays there); whenever an X 6.5 is observed, the automaton moves
down one state (unless it is in the lowest state); and if an X € A
is observed, the automation stays in i?s current state. Adding © traps
and a matching section this automation behaves exactly as if it were
testing a coin that can show H, T or S, where po, q0 and ro are
?OCH), 56(5) and ?0(5). The quantities p., q,, and r = are similarly
defined. Thus the P(e) for the new saturable counter (in the general
problem) is given by (41) where the parameters are defined above. Since

Py/P, =4 and qy/e; = £, (41) becomes:

’ m-1
2 wdnl T -1

) P o= Tm_l—l » where y = (4/£) (42)

But this is just P*¥ for the general problem. Using the above substitu-
tions, k¥ is still given by (40). |

Now drop the assumpti;n that Pr{H} >'0 and Pr{5} > 0. Using the
definitions of Z and 4, it is seen that if Z'< ®, then for any

€> 0 it is always possible to find sets :He and Sé with nonzero

probability measure such that for all x eZHe, 2x) > Z - ¢, and for
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all x ¢ je, £(x) <L+ e 1f 7 =®, then require that 1/£(x) < ¢
for x e}ie. Thus by letting ¢ and O approach zero, P(e) approaches

Plim' Hence it is seen that the saturable counter with only slight modi-

fications, is an e-optimal machine for the original problem. Equation

(40) still gives k¥, if P = 90(346), q = 90(j€), etc. The formof this
machine is depicted in Fig. 3 where an arrow indicates an allowed tran-
sition and the event resulting in this transition is indicated over the
arrow (for clarity the events which result in self loops have been

deleted) .

O Qe Qe
7e

e. e e k*&7e

Fig. 3. THE CANONICAL FORM OF THE e~OPTIMAL MACHINE.

It is of interest to note that if X has a continuous probability
distribution, it is possible to achieve the randomization which is
necessary for the operation of the 5 traps and matching section by
defining sets :Hé and 5' whose elements have 1 .r.'s within ¢ of
2 and 3 respectively. Further, let Pr{H’ } 5 Pr{i } and
Pr{ié} = kd Pr[fe} (under both hypotheses). Then if the automaton
leaves state 1 only when an X éﬂé is observed and leaves state m
only when an X € 3; is observed, the desired behavior is achieved,

and no artificial randomization is required.
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Examples:

Example 1: Let X be a Bernoulli random variable with distribution

Consider the two-hypothesis testihg problem H0 :p =Py vs. H1 P =Py

under equal priors no = ﬂl = 1/2. Recall in the case no = nl that

the c¢-achievable lower bound on the probability of error reduces to
P* = 1/[149 ™12y,

a) let Py = .99...99 and P, = 99...90 (with the same number of

9's in between). This problem appears difficult because of the large

number of trials necessary to obtain a significant test of the small
difference between Py and P, Since an m-state automaton may only
"count to m," it seems that memory will be exhausted.before the test

reaches an interesting level of significance. However, in this problem

L =py/p, =1, £ =0q4/q =.1, and 7= 2/ = Pyd,/P 9y = 10. Thus

for an m =5 state memory, P¥ = 1/101 01,

IR

- = - - * _
b) Now let Py = 3/4, p, = 1/4. Here 7 = Poql/plq0 =9, and P*=1/82
(for a 5-state automaton). This probability of error is actually higher
than that of the previous example in which p0 = .99...99 and

p, = 99...90.

c) Of peculiar interest is the case po = ,501, p1 = 499, Here 7y =
1.008, which yields P*’si.496 for a 5-state automaton--little - better
than using no memory at all. In fact, it requires approximately 500 states
to obtain P¥ = ,0l. Clearly the difference Ipo-pll is a poor measure

of the resolvability of H0 vs. H1 in the finite-memory case.
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The difference between examples a) and c) is that in example a)
there is an event (the observation T) which occurs much more frequently
under one hypothesis (Hl) than under the other. By essentially dis-
regarding the other events, the high information content of the extreme
event is well utilized. However, the similarity of examples a) and b)
is lacking if onlf a finite number of observations is available. That

is, the rate of convergence to the steady state is much slower in a)

than in b).

Example 2: Let X be a univariate normal random variable with mean

o

p = +1 (under HO) and p = -1 (under Hl) and fixed wvariance g‘ =1.
lLet WO = Wl = 1/2. In this case the likelihood ratio is given by
2(x) = exp(2x). Therefore 7= w, 4 =0, and y =o® ;—resulting in

Pk

H

€

0 for any memory at all (m = 2). To achieve this, let

{x : x =T} and ’je = {x : x =-T}. Move to state 1 for x eJe,
to state 2 for x e}He, and remain in the current state otherwise.

Then the asymptotic probability of error P(e) tends to zero as T — «.

Example 3: X has a Cauchy distribution with pdf £(x) = 1/n(1+(x—p)2).

Test H, : u=1 vs. H, = -1 with 7. =17

o 1 o 1= 1/2. This example

is of interest because the Cauchy and the normal distributions look
similar and have comparable convergence rates for the probabilities

of error in the infinite-memory case. However, calculation shows that
=4 =58 and y= 35.6. Thus a 2-state memory yields P* = .15

for the Cauchy distribution, in marked contrast to the P*x = 0 obtainable

in the normal case,
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Uniqueness of the ¢-optimal Class:

it has been shown that P¥* is a lower bound on P(e) and that an
e-optimal class of machines exists. However, might there not exist a
machine for which P(e) = P*¥? The following theorem shows this to be

impossible except in certain degenerate cases.

Theorem 3: With the folléwing exceptions, there exists no machine with

P(e) = P¥*,

Exceptions: 1. If the machine has two states (m = 2), then P* is

achievable. (No ©® traps are needed.)

w1l [0 ™M :
2, If ¢y = max { —, p then P* is achievable by the machine
T
1 70

which always decides the hypothesis with the larger prior probability.

3. 1f ¢ is infinite or 4 1is zero and if there is non-zero
probability of observing an X with this value of 1.r., then P*x = 0
and is achievable. This case is degenerate since the support‘of ?O
and ?1 are different, and there exists a set of observation values

which yield zero error.

Proof of Theorem: Referring to the proof of Theorem 2 it is seen that

there are two necessary conditions for a machine to achieve P(e) equal
to P¥*, First the automaton must have the maximum allowable spread of
7m—1 and secondly the probability of being in a state which does not
have the maximum or minimum s.l.r. must be zero. These two conditions
are contradictory (except in the degenerate cases mentioned) since the
resuits of the Appendix show a nonergodic machine cannot achieve a spread

of 7mr1.
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Now that i£ is known that no optimal machine exists, the question
of uniqueness of the e-optimal class arises. That is, might there exist
a class of machines, much different in structure from the saturable
counter, which is also c-optimal? The following theorems show to what

extent the answer to this question is no.

Theorem 4: Except in the degenerate cases listed below, the probabili-
ties of error of a sequence of m~state automata approaches P* under the
following necessary and sufficient conditions.

1. The spread of the automata must approach the maximum allowable spread

m1
4 .

2, All Mo except By and Moo must approach zero (it is assumed

that the states are numbered in order of increasing s.l.r.).

3. ug must approach Vw——l Ym—l -1.

0

Yprl -1

Degenerate Exceptions:

or

2, y‘m-l Smax{'zro/’ITl, ‘rrl/’lro}.

Proof: The sufficiency of the conditions will be proved first. Since

all the pi's, except pl and um, approach zero, “1 + pm approaches

one, Thus in the 1limit

#Tm-l'l
o 0 0 :
=1 - =1 - 3
Hm 1 Hy 1 m-1 (43)
y -1

30



or

. (44)

Let C be the s.1.r of state 1. Then the s.l.r. of state m approaches

m-1

cCr so that in the limit
r
T m1
Vo, o -
1 1.0 1 0
=g =g T (45)
T -1
\.
and
m-1 T m1
Y ~“ XY= T
1 0 1 2o :
p, = — [J. = - — . (46)
moa m-1"m c m-1 l. Tm 1 1
But in the limit
1 1
byt =1. - @n
Therefore _
El m-1
A K
P (48)
m-1
.

Thus in the limit

31



P(e)

1
=
o
=
o
+
=
1t
=

) : (49)
ml _ 41 w1
T Y 'ITO v
+‘Wl m-1 m-1
Wl Y Y -1
-1
1TVW'W' ym -1
01
= m-1 = P
T -1

proving the sufficiency of the conditions.

To see that the conditions are necessary, refer to the proof of
Theorem 2. For P(e) to approach P*, equations (21) and (22) must
approach equality. But these are just conditions 1 and 2. Now if con-
dition 2 is necessary, ( necessarily approaches pg.
point on the lower boundary of the ROC yields P(e) = P* and at that

But only one

point ¢ = o*. Thus pg must approach ¢oF as given by (30), which
is just condition 3. Q.E.D.

Conditions 2 and 3 merely state that a saturable counter must have
its value of § .tend to zero and its value of k tend to k¥, Whether
or not other types of machines can approach P* really depends on con;
dition 1. Thus the following two theorems, which give necessary and
sufficient conditions for the spread of a sequénce of automata to approach

m-
T 1, demonstrate the essential uniqueness of the class of e-optimal machines,
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Theorem 5: If a sequence of m-state automata has its spread approach
Ym—l as a limit, then the following conditions must hold: (It is assumed
that the states are arranged in order of increasing s.l.r.)
1. If the states of the automaton are partitioned into two sets
C = {l,2,...,k} and C' = {k+1, k+2,...,m}, then the fraction of the
flow from C' to C which is not from stéte k+1l approaches zero.
Similarly, the fraction of the flow from C to C' which is not from
state k approaches zero.

T 0

2. The ratio of 2 pk 3 the probability of moving from state k
’

j:k-i-l m

to a higher numbered state under H_, to z Pl ., the same probability
0 - k,J
_ j=k+1 k-1 k-1 1
under H approaches . Similarl
1’ 1YY £ y ' pX pk,j = pk,j

j=1 j=1

approacbes g.

The first part of condition 1 will be proved by contradiction,.
Let the automaton be partitioned into C and C' as in condition 1,
but assume that the fraction of the flow from C' to C which is from
{k+2, k+3,...;m} does not approach zero, but rather is always greater
than some positive constant C1 for a given subsequence of machines.

Further assume that the spread of the sequence of automata approaches

Ym—l as a limit. But for the spread to approach Tmrl it is necessary
for the s.l.r. of any state i to approach C2 Tl-l, where C2 is

the minimum s.l.r. So for any ¢ > 0, in the tail of the sequence

0,1 i-1
- 50
p.i/p.i > Cz(y €) (50)

But equating flows between C and C'
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0. 0 0 0
2 I p; pij = X z My pij = A (51)
ieC jeC! ieC' jeC
and
11 1 1
2 X W, pij = I z By pij =B (52)
ieC jeC! ieC' jeC ,
are obtained. But by Lemmas 1 and 2
<0 /1 =3
) pij/pij £ (10)
and
0,1 - i-1
w/uy =Co v (53)
so that
0. 0 k-1 - 11 '
A= Z X p.ipijsczr DR T (54)
— ieC jeC' ieC jeC'
or
k-1 - ’
A= Cy v 2 B. + (55)
Now using (10) and (50)
0 0 i-1 11
A= I z By Py >C_4 Z z (T( )"G) B, P.. (56)
. R J 2= . . i Fij
ieC' jeC ieC* jeC
is obtained. Combining (55) and (56) yields
k i-1 1 1
¥+ B> I Z oy T-e) yy Pi5 (57

ieC' jeC

since y = E/&; But using the second expression for B
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m k m

k
11 i-(k+l 11
z Zopy Py > X z (r ( )—e')ui P, (58)
j=k+l j=1 i=k+l j=1 J
results, where €' = Yf €. Equivalently
m m
i- (k+1 1.1
z z (l-r1 (ke )+€') Hy Py >0 (59)
izk4l j=1 J
or
k m k
1 1 i-(k+1 11
€ B Z Pyt Z0Z -y e Wy P;3 >0 (60D
j=1 ? i=k+2 j=1
or
e'{flow from state k+l to ClHl}
m k i 1
+ (I-y+€') Z z My pij >0 (61)
i=k4+2 j=1
L S
But = Z u. p.. is the flow from the states in C!', except for
. . i-"13 .
i=k+2 j=1

k+l, to C. By assumption this is greater than C1 times the flow from
state k41 to C. Further, it is always possible to make (1-7-+<-:')1S —C3 <0

by going out far enough in the sequence. Thus
e'{flow from k+l to ClHl}

+ (-C,) Cl{flow from k+l to C|H1} >0 (62)

or

1 -
'e C1°3 >0 (63)

Since C1 > 0, 03 > 0 are fixed constants, far enough out in the sequence

e' < Clcs, a contradiction.
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Thus the first part of condition 1 has been proved. A similar
argument proves the second part.

Condition 2 will be proved by again partitioning the states into
¢c=1{1,2...,k} and C' = {k+1, k+2, ...,m} and equating flows under

H. and Hl’

0
2z pwol=5 = ugpg.EA (51)
ieC jeC! I ject jec J-
and
11
S A R pi pij =B (52)
ieC jeC® ieC' jeC

result, Now substitute {1,2,...,k} and {k+l, k+2,...,m} for C

and C'. If ¢

1 is the fraction of flow from C to C' which is

not from state k, then the total flow is 13; times the flow from
' ' 1
state k, so
m k-1 m m
0 0 0.0 1 0 0
A=p L. P P + Z DI T pij = (I:E—) My Z P j (64)
J=k+1 ? i=1 j=k+1 1 j=k+1 ?
is obtained. If 02 is the minimum s.l.r,'theﬁ as before (64) can
lead to
m
0
Z Py j m
k- j=k+1 ’ 1
AS Loy, R W I P, . (65)
l-¢ 2 m k | k,J
1 1 j=k+1
:j:k-i-l ’
Now
k m m
B= X T Py = My z Py 5 (

i=1l j=k+1



SO

m

5 po
) X, 3
1 k~- =k ’
AS ) Cy Y ol [P =L I 67
1 L |
j:k-l-l ’

Furthermore, since P(e) .approaches P*, the s.l.r. of state i must

i-1
approach 71 so
m k m k
0.0 k 1 1
A= X oy pijzc2 (y-ey) £ I DINTI (68)
izk+l j=1 izk+l j=1 J

where €2 can be made as small as desired by going out far enough in

the sequence. But (68) is equivalent to
AZC(k-eb)zB (69)
FCylr-ey) 4 B. :

Therefore using (67) and (69)

m
0
Z P .
j:k-i-l k’J
e = (-6 ) (e 4 (70)
1
YR j -
j=k+l ’
. _ —(x-1) s
results, e2 =7 €2’ But by condition 1, € approaches zero,

and it has already been noted that €5 (and hence eé) approaches zero
so the right side of (70) approaches yf. Since y = E/g, the right
side of (70) approaches Z, proving the first part of condition 2.

A similar argument proves the.second part.

Theorem 6: The conditions of Theorem 5 are not only necessary, but also

sufficient for the spread of the automata to approach Yprl.
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Proof: Partition the states of the automaton into C = {1,2,...,k}

and C' = {k+1, k+2,...,m} and equate flows to obtain

0 0 0.0
2 X oy, P, = z z By Py = A (51)
jeC jeC' J ject jeC J

1
2 £ pe,=3I = by Py, = B. (52)
ieC jeC! J jeC' jeC J

Now if €1 is the fraction of flow from C' to C which is not from

state k+1 (under HO), then

k

1 0 0
A=—_p Z p .. (71
1 € k+l j=1 k+l,J
Now using the other expression for A
m k-1 m
A=p.12 z pg .+ X z:—’ugpg. (72)
jekel 09 izl jekel J
so that
m
A= ug z py (73)
j:k-l-l »J
and
k m
1 0 0 - 0 0
T H DI ] DI « M (74)
41 € k+1 j=1 k+1,j k el k,J

Similarly using the expressions for B and letting 62 be the fraction

of flow from C to C' which is not from state k

m k
11 1 . 1 1
- P L Zp . (75)
I-c, My PR kel 7y kel
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Combining (74) and (75) yields

- m -m
1
% p0 . Z P

0 /1 .
uk+1/“k+1 = 1 jekel  03f5oka1 0d
0/1 (-e;)(-ex) 5 K

“k/hk s p0 !
P /T P .
5=1 k+l,J j=1 k+l,J

(76)

j=k+1 Jj=k+1 j=1 1

approaches J by condition 2 so

m9 oy - koo ko
But z N z . approaches nd h . .
pk,;// Pg,5 °PP £ oand 2 Py jf Prsl, ]

0 1 -

pk+1/{lk+1 - 2_63

——0'/—1— = (1—61)(1-62) 7= 7
My /My = 4

where 63 and 64 approach zero. But el and €2 also approach

zero (by condition 1) so that the ratio of the k+1St s.l.r. to the

kP s.1.r. approaches Z/g = vy. Letting k =1,2,...,m1 it is seen

that the spread of the automaton must therefore approach Ymrl’ completing
the proof.

These theorems show that the saturable counter is an essentially

unique e-optimal class.
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Conclusions:

The form of the c-optimal class provides insight into the optimal
decision making process. Essentially the automatén waits for maximal
or minimal 1l.r. events before changing state. Furthermore when it
reaches an extreme state, the machine leaves with small probability.

In the case of discrete distributions, this may require artificial
randomization.

It is noticed that the automaton waits for extreme events before
changing state. This shows that in many cases roundoff schemes are far
from opfimal, since they put emphasis on small changes. Thus taking a
sufficient statistic and rounding it off to keep memory finite will in
general not be close to an optimal strategy.

The automaton is able to wait for extreme events, even if they occur
infrequently, since the number of trials is infinite. If the number of
trials N is finite, the automaton will not be able to neglect events
of moderate infcrmation. The problem of finding an optimal machine when
N is—finite is an intéresting one, for, except in certain degenerate
éases; as P(e) approaches P¥, B must approach zero. The resulting
time to approach s.s. increases without bound. (See Appengix-III.) Thus
a machine which is close to optimazl for an infinite number of samples
is far from optimal in the small sample case. Howevér, we conjecéﬁre that
for finite N the optimal machine will still resemble the saturable
counter in certain respects. We believe that high l.r. events will still
cause upward transitions, and low 1.r. events downwards transitions

although the events need not be as extreme as before. Furthermore, we
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believe that artificial randomization will still be needed; although
the values of ® will not be near zero.

It would also be of interest to see whether human beings, in
problems to which they have allotted finite memory (such as "like,"
nindifference" and "dislike") demonstrate an optimal randomized learning

procedure similar to that suggested by this paper.
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Appendix I: Definitions and Facts from the Theory of Markov Chains

As was noted in the body of the paper, for given H° and H1 the
states occupied by an automaton form a Markov chain. Several definitions,

similar to those of Markov chain theory, are needed.

Definition 1: A state j is said to be accessible from state. 1

(abbreviated i — j) if and only if (iff) it is possible to reach
state j from state i 1in a finite number of steps. In more formal
2]
terms i-» j iff z Pr{automaton is in state j at time n l automaton

n=1
is in state i at time zero} > O.

Definition 2: Two states, i and j, communicate (written i — J)

iff i j and j—o i. A set of states, 4 forms a communicating

class iff V.

i,je8 iej.

Definition 3: An automaton is irreducible iff the sep of ail its states

forms a communicating class. This type of automaton is also known as

ergodic (see Fact 7).

pDefinition 4: A state i is recurrent iff, given that the automaton

starts in state i, it must eventually return there with probability .
one. A set of states 4 is said to be recurrent iff every state in 4
is recurrent. Note: Some authors use the word persistent instead of

recurrent.

Definition 5: A state i 1is transient iff it is not recurrent. That

is, given that the automaton starts in state i, there is non-zero
probability that it will never return. A set of states 4 is transient
iff every state in 4 is transient. Note: Some authors use the word

non-recurrent instead of transient.
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Definition 6: A set of states A is said to be closed iff once the

automaton enters 4 it can never leave.

Some useful results from the theory of finite Markov chains will
be stated without proof. The proof are either self-evident or may be

found in introductory books on stochastic processes [15].

Fact 1: A recurrent communicating class is closed. Therefore once an

automaton enters a recurrent communicating class it can never leave.

Fact 2: The set of states of an automaton can always be partitioned
into an exhaustive collection of disjoint subsets Rl,ﬂz,...,ﬁk and J,
such that each of the ﬂi's is a recurrent communicating class and J

is transient.

Fact 3: An automaton always contains at least one recurrent -communicating

class.

Fact 4: An irreducible automaton contains only one communicating class.
This class is necessarily the same as the set of all states in the

automaton.

Fact 5: A recurrent state, if visited once, will, with probability one,
be visited an infinite number of times. A transient state will, with
probability one, be visited only a finite number of times. Therefore,
with probability one, the automaton eventually reaches (and never leaves)

a recurrent communicating class.

Fact 6: If an automaton is irreducible, regardless of the initial state,

it will visit every state in finite time wpl.
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Fact 7: An irreducible automaton is ergodic. That is, Hy is equal,
with probability omne, to the limiting proportion of time the automaton
spends in state i. More concisely, the time average is equal to the
ensemble average.

Since an automaton must eventually reach, and never leave, one of
its recurrent communicating classes, it is necessary to know the behavior
of such classes. Since such a class, considered by itself, is an irre-
ducible (or ergodic) automaton, it is seen that knowing the behavior of

ergodic automata will greatly simplify the study of nonergodic automata.
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Appendix II: Extensions of Theorem 1 to the Nonergodic Case

The following theorem will extend the proof of Theorem 1 to the non-
ergodic case. Note that since a transient state is visited only a finite
number of times (with probability one) it follows that if i is transient,
then By must be zero. Thus if i 1is transient under both H0 and

H

1 the s.l.r. for state i is undefined.

Theorem Al: The spread of a nonergodic m state automaton is less than

or equal to 7m 2, provided y is finite.

Proof: Case I: If the automaton has only one recurrent communicating

class, R (with m < m states) and a set of transient states J (with

m, = m-m, states), the automaton must eventually reach % independently

— -

of the initial state. Thus the machine effectively reduces to an my
state irreducible automaton. By lemma 2, the spread is less than or
my-1

equal to 7 1 , which is less than or equal to 7m—2’ since

m:l < m-1.

Case I1: The automaton has no transient states, but several recur-
rent communicating classes Rl,ﬂ2,...,ﬁk having Wy Ty, oo oMy states
respectively: If the automaton starts in stéte ie Rj’ it never
leaves Rj. Thus the machine is effectively irreducible with mj

states. Aéain by Lemma 2 the spread is less than or equal to

mj-l n-2

7 <9y “.

Case I11: There are several recurrent communicating classes,
31,32,...,3k, having ml,mz,...,.mk states respecti?ely. In addition
there is a set'of transient states § having mt states. If the autom-
aton starts in a recurrent state, Case II applies. If, however, the autom-

aton starts in a state io € 9, several of the Ri's may be accessible.
45



If this is the case, there will be a set of probabilities P(ﬁl),
P(ﬂz),...,P(Rk) denoting the respective probabilities of reaching
ﬁl,ﬁz,...,ﬁk. (In this and future statements, the conditioning of
starting in state i0 is tacit.) Since the automaton must eventually
reach one of the Ri's, these probabilities sum to one. As far as the
automaton is concerned, all ﬁi such that P(ﬁi) = 0 will never be

reached and may be neglected{ Similarly, if any state i € 9 is not acces-

sible from

io, it may be neglected. Eliminating these states results in a

smaller m' state automaton (or at least one which is no larger), so it can

be assumed that all states in the automaton are accessible from io, (If such

is not the case, eliminate the inaccessible states and apply the following

-2 -2
n < 7m 2

proof to the smaller m' state machine. Since 7y >1, 7
Now for i € gl, By = PGRI) ul,i where ul,i is the stationary
probability of the automaton's being in state i given that it reaches
ml. It is seen that the By vector is just the stationary probability
of occupation vector for an irreducible m state automaton. Similarly

if i1 eq. . = P@. . . Wwhere . is the stationar robabilit
50 M4 J) Mg ¥ y P y

of occupation vector for an irreducible mj state automaton.

Now if the states with the maximum and the minimum s.l.r. (i and

J respectively) occur in the same recurrent communicating class, say

QZ, then
0 0 o1
1 1] 1 0 .
By MJ My HJ

(A0)




{uo wo 1

i L, j mﬂ_ m-2

= ——iL- —r—‘l =7 =7 (AO0)
[“z,i (0,3

since EZ is the stationary probability of occupation vector for an

m‘Z state automaton, and m‘Z < m.

Next consider the possibility that state i (with the maximum s.,l.r.)

is in a different recurrent communicating class from state j (with the

minimum s.l.r.). Without loss of generality let these classes be g{l

and g{z respectively. Then

0 0 0 1 0 1
X . P P
By 5 @) PRI By 5 Moy (A1)
1 17 1 0 1 0
. P P
Hif My @) P ®y) K15 Mo, j
0
Pl’is ml"l
But Vi'eg{ C = T =Cr by application of Lemma 2, Moreover
1 By s
1,i°
. 0
C < 1. Otherwise all By gt > ui it for all i' and it would be
. ’ ’
. m,-1
impossible for both vectors to sum to one. Similarly CY 1 > 1,
Thus (Al) reduces to
0 0 0 1
My L.LJ. p (‘Rl) P @2) m-1 mp-1
1[71= \1 0 roT (A2)
Wyl By P (‘Rl) P (.‘Rz)

it will be shown that the quantity in brackets is less than or equal

m
to 7 t. Consequently (A2) becomes

m1+m2+mt—2 < m-2

=7 (A3)

i}:l-'l o
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since (m1 + M, +oee. + mk) +m = m.

To show that the quantity in brackets is less than or.equal to
T , consider the following experiment. The automaton is started in .
its initial state, io e;i, at t = 0. Eventually the automaton leaves
:1 and enters one of the mi’s where it would then normally stay forever.
However, whenever the automaton would normally exit to a recurrent state,

force it instead to retufn to i its initial state in .j. Define

0’

N(t) to be the number of times up to time +t <that the automaton would

normally have exited from ;1 but instead was restarted in i By the

0"
strong law of large numbers (SLLN)

lim [t/N(t)] = E{time to leave J}, wpl . (A4)
tow

It is seen that the effect of not allowing the automaton to leave :1

is the same as taking all paths leaving :j and looping them back to iO’

making tj into a recurrent communicating class with m, states., It

thus has a well-defined stationary probability of occupation vector g.

Now by the SLIN

. T . .
lim -% = 1I{would have exited from d to Ry at time t = i}
Tox .

i=1 .
= X o.a. ., , wpl. (A5)
jet 33,1
where a.j 1 is the probability of going from j e to any state in
gl for t;e unmodified automaton, and I is an indicator function, By
the SLLN
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lim N(T) ) 1 Ngr)

exited to Ry
T 50 T N(T) 1=1

when N(t) = 1

1
, Wwpl.
E{time to leave J P@;) P (A6)

Equating (A5) and (A6) yields

P@.) = E{time to leave I} = o, 2, (A7)
1 jea V. J,1

But the same argument applies to all the other Ri's. Defining
aJ. i to be the probability of going from state j € § to any state
b

in ﬁ{i (again for the unmodified automaton) (A7) becomes

PQR.) = E{time to leave :} o, a, . (a8)
1 . Js1
- jedA

Furthermore, since g 1is the probability of occupation vector for an

irreducible m state automaton,

£ there exists a constant C such that
i(_; mt-l
. C . A9
VJe g < Gl <Cy (A9)
J

Since a.

is just the probability of an X event, it follows from
?

—

Lemma 1 that

N

I
IA
®
. ©
2
1A
|

. (A10)

[
[y
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Therefore,

o 1
Pr&)F &) _ Eo{time to leave 1}-E1{time to leave 1}

PleRl)POGRZ) El{time to leave 1} Eo{time to leave A}

z og ag 1 z c% a% 9
5 cl a1 5 0 a0
i J J,2

1 . j

-1
{: z (C ypt
< jed

J,1

1..- 1 1 1
oj)(z a’ E} z o. aj’2

jed J

1 1
2 0o. a,
% %51

-1 _
C x?t J
C

completing the proof.

. -
Since the spread of a nonergodic automaton cannot exceed 7

and the maximum spread determines the lower bound on P(e),

1 1
p . .
(c GJ)QQ aJ

,2)

jel

=y

(A11)

it is seen

that, except for degenerate cases, an m state nonergodic automaton is

at least one state worse than an optimal ergodic automaton.
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Appendix III: Rate of Convergence

Our objective has been to minimize the asymptotic probability of
error P(e). In a practical situation, with only a finite sample size,
it is important to know the rate of convergence of the probability of
error at time =n, Ph(e), to P(e). Initially, the rate of convergence
depends on all eigenvalues and eigenvectors of the state transition matrix
P. However, the asymptotic rate of coﬁvergence depends only on that
eigenvalue of P which, in magnitude, is closest to one. Letting ~r
be the magnitude of this eigenvalue, the time constant T is given by
T = 1/[£n(1/r)].- Therefore the rate of convergence, defined to be 1/T,
is equal to /n(1/r). Unfortunately, at this time, we do not have an
analytical expression for r. However, it is intuitively obvious that as
® +tends to zero (in the saturable counter with 3-traps and matching sec-
tion) T tends to infinity and the rate of convergence tends to zero.

Although we cannot demonstrate the exact dependence of T on B,

w; can show that a related parameter T' (defined below) is proportional

to 1/9, thus indicating the expected behavior.

Definition: The escape time T' of a saturable counter with S-traps and
matching section is defined to be the expected time to pass from the end
state (1 or m) in which the wrong decision is made to the other end state

(in which the correct decision is made). Therefore

|
ST = Ty + Ty (A12)
where
To = E[number of steps to reach state m from state I[Ho] (A13)
T1 = E[number of steps to reach state 1 from state m|H1] (A14)
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To see why this parameter is of importance consider the special case
where X is a Bernoulli random variable with parameter either po or pl,
m+l

and the automaton is started in state = (m is assumed odd), the mid-

dle state. After a (random) time N1 the automaton reaches one of the
end states. But as will be shown below, for small values of P(e),
PNI(e) is much larger tban P(e). This is becau§e there is rélatively
high probability of the automaton's reaching the "wrong'" end state. If
it does, after an additional time N2 (also random) it reaches the
"oorrect" end state. Due to the ¢-optimal design of the machine, once
the correct end state is reached the automaton stays there for a "long"
time. Thus for n 25N1 + N2,Pn(e) is close to P(e). Also due to the
design E[Nz] >> E[Nll. Therefore as ® tends to zero E[N2] becomes
the main factor limiting the convergence of Pn(e) to P(e). Thus, as
previously asserted, T' = E[N2] is related to T.

At this point it would be well to show that for small values of
P(e), PNl(e) >> P(e) as was previously asserted. Essentially the prob-
lem reduces to a random walk with absorbing barriers at 1 and m and
the initial state in the middle. If there is a drift to the right under
both hypotheses (po > 1/2,p1 > 1/2), then with high probability (greater
than one half) the automaton will reach state m first, and decide HO.
But a priori there is probability “1 that H1 is the true state of
nature. Theréfore PNl(e) > }/2 ) >> P(e) if P(e) is reasonably
small. Similar remarks hold if there is a constant drift to the left
(py < 1/2, p, < 1/2).

If under Ho there is‘a drift to the right (p0 > 1/2) and under

H1 there is a drift to the left (p1 < 1/2) then the situation resembles

p1 =1 - po, the first case considered in deriving the saturable counter.
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In that case there is a one-to-one correspondehce between sequences that
result in reaching state 1 first and sequence that result in reaching
state m first. Merely interchanging H and T in a sequence that
reaches state 1 first causes state m to be reached instead and vice
versa. By symmetry PNl(e) is the same under HO and H,, so assume

1

HO. A sequence which reaches state 1 has (m - 1)/2 more T's than

H's and a sequence which reaches state m has (m - 1)/2 more H's than
. . . . (m-1)/2
T's. Therefore any sequence which reaches state m first is (po/qo)
times more probablz than the corresponding one which reaches state 1

. A . . . (m-1)/2
first. But then the probability of reaching state m first is (po/qo)

times the probability of reaching state 1 first, and since the two prob-

abilities sum to one

1

Pr{reaching state 1 before reaching state m]HO} = (A15)
<po)(m-1)/2
1 +f—
%
therefore
P (&) = = (A16)
m-1)/2
1 14 ( _g)( )/
9o

Furthermore for optimal k and small J

P(e) = P*¥ <L

since
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and P* is largest when ﬁo = ﬂl = 1/2. Thus for reasonably small

values of P(e)

P, () 2NP() . (A17)
1

if P(e) = .01, PN (e) = .1! thus it is seen that PNl(e) >> P(e) when
1

P(e) is reasonably small, It should also be noted that PNl(e) is
P(e) when & = 0. Therefore (A16) and (34) show that for p0 =1 - pl,
P(e) is the same when 5 =0 or ® =1, as was noted previously.
[Remember that m must be odd in (A1l6), whereas in (34) m must be even.]

Returning to the problem of calculating T = E[NZ]’ first consider

-
]

E[number of steps (time) to reach state m from state 1|H0]‘

E[time to reach 2 from 1]

+ E[time to reach m from 2] . (A18)

where the conditioning on H0 is tacit. But, given that the automaton

is in state 1 it transits to state 2 with probability Bpo and stays in

state 1 with probability 1 - Bpo. Thus using properties of the geometric

distribution

EB[time to reach 2 from 1] = 1/(6p0) , (A19)

Considering the second term in (A18),

E[time to reach m from 2]

= E[time to reach m from 2‘ reach m before 1] x Pr{reach m before

1 from 2}
(A20)

+ E[time to reach m from 2| reach 1 before m] x Pr{ reach 1 before

m from 2}
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Further

E[time to reach m from 2| reach 1 before m]

E[time to reach 1 from 2| reach 1 before m] + E[time to (A21)

reach m from 1]

E[time to reach 1 from 2| reach 1 before m] + T0

Therefore

p— ’ ﬂ
1/(8p0)+ E[time to reach m from 2| reach m before 1]
@ Pr{reach m before 1 from 2}

+ E[tlme to reach 1 from 2| reach 1 before nﬂ (A22)

X Pr{reach 1 before m from 2}

1 - Pr{reach 1 before m from 2}

There are three terms in the numerator of (A22). The first temnds to
infinity as 5 tends to zero, but thé other two terms do noF involve
® and so are constant and finite. Therefore as O tends to zero To
tends to 1/[8p0(1 - Pr{Reach 1 before m from 2})1]. A similar argument
shows T1 to be inversely proportional to & (as © tends to iero),
so that T' = KOTO + anl has the same O dependence. Thus T'-» » as
5-0.

Now, remove the restriction that X be a Bernoulli random variable.
If there is non-zero probability of observing events in N = {x:4(x) = ¢
and J = {x:j(x) = !ﬁ then the previous analysis still applies. If how-
ever, H and 9 have zero probability measure than the rate of the con-
vergence of the automaton will depend not only on 3, but also on-the
sets :He and EL. For a given €, the tail behavior of the probability
measure induced on the 1.r. determines the maximum rate of convergence.
If e is fixed then ﬁhere is a modified lower bound Pz on P(e) and
the same analysis may be applied, so that then too T' is proportional

to 1/9.
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Appendix IV: Thé Case of 7y = o

As noted after the proof of lemma 1, certain proofs require modifica-
tions if £ = ® or 4= 0. For example, in lemma 1, if 7 = the
second inequality becomes pij/pij 5 o which is trivially t£ué. The
real problem occurs later in the paper, when we assert that if y = =,

ﬁ* = 0 is the greatest lower bound on P(e). That it is a lower bound
trivial, so the problem is to show that it is achievable (or at least
approachable).

To see this, consider the case where 7 =0 and K = (x: £(x) = 1}
has non-zero probability (with respect to Jtopo + Jrlpl). Since Po(}()fl
it follows that 'pl(K) = 0. But then pO(K) >0 by assumption. Thus
K occurs with non-zero probability under H0 but with probability zero
under Hl. Consider the two state machine, which decides H1 in state

1 and H0 in state 2. Start the machine in state 1 and let it transit
to state 2 only if X is observed. If it ever reaches state 2 it stays

there and never leaves.

Under H1 the machine never leaves state 1. Thus it always makes

the correct decision. Under H0 it transits to state 2 in a finite time

(with probability ome) and from then on makes the correct decision. Thus,
in either case, the asymptotic P(e) is zero. Note that this is a degen-
erate case siﬁce. P* is actually achievable. Furthermore the machine
which achieves P* does not have but one communicating class.

Also note that in this case (40) predicts that k¥ =0 (since 7 =
0 and %o is non-zero), in agreement with the lack of transitions from

state 2 to state 1.
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if K has zero probability measure, then as before He = {x:[l&(x)]-1

*
< ¢} can be used as a suitable approximation to HX. However now Kk

is near, but not equal to zero. Thus there will be low probability tran-

sitions from state 2 to state 1.

If 4 = 0 similar remarks hold (merely replacing HO with Hl’

etc.).
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