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On Tree Coding with a F idelity  Criterion 
CHARLES R. DAVIS, STUDENT MEMBER, IEEE, AND MARTIN E. HELLMAN, MEMBER, IEEE 

Abstract-This paper reexamines Jelinek’s proof that tree codes can 
be used to approach the rate-distortion bound. It is shown that the 
branching process used in Jelinek’s proof is not a (strict-sense) branching 
process (SSBP) when the source is asymmetric. Branching processes 
with random environments (BPWRE) are introduced and used to extend 
the proof to general discrete-time memoryless sources. The theory 
developed indicates why a particular metric used in experiments per.- 
formed better than another suggested by the original proof. 

I. INTRODUCTION 

T HE EXISTENCE of random tree codes, suitable for 
encoding discrete-time sources with independent 

identically distributed (i.i.d.) outputs with respect to a 
distortion measure was first proved by Jelinek [1] for a 
fairly general class of source distributions. More recently, 
algorithms have been developed by Anderson and Jelinek 
[2] and Gallager [3] that further demonstrate the applic- 
ability of random tree codes. Their results, however, apply 
only to a class of sources and distortion measures that are 
symmetric (i.e., the distribution on source letters is uniform, 
and the columns of the distortion matrix can be partitioned 
in such a way that within each partitioning all rows are 
permutations of one another and all columns are permuta- 
tions of one another). 

Recent work by Viterbi and Omura [4] has demonstrated 
the applicability of time-varying trellis codes to this encod- 
ing problem, and their results constitute an alternative 
proof of the tree coding theorem. 
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In the original proof of the tree coding theorem by Jelinek 
[1] the existence of suitable tree codes is dependent on the 
probability of extinction of a related branching process 
being strictly less than one. As will be presently demon- 
strated, this branching process has probability of extinction 
strictly less than one only for symmetric sources previously 
defined. However, with a modification to the branching 
process and a reevaluation of the extinction criteria, it will 
be possible to reestablish the tree coding theorem. 

The remainder of the paper is organized as follows. 
Section II contains some rate-distortion relationships we will 
need and some results concerning branching processes. In 
Section III several problems concerning the extinction 
criteria of a branching process are discussed along with an 
example. In Section IV the tree coding theorem is proved 
using the correct extinction criteria, and Section V is a 
summary. 

II. PRELIMINARIES 

A. Coding with Respect to Fidelity Criterion 

The minimum rate necessary to encode an i.i.d. informa- 
tion source with additive single letter distortion measure 
so that the average distortion is no more than some target 
distortion D, is given by [6] 

Wo) = inf I(Z; Y) (1) 
where I(Z; Y) is the mutual information between a source 
output 2 and a reproduction symbol Y. The source outputs 
have probability density q(z), and the infimum is over all 
conditional probability assignments w(y 1 z) such that 
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We shall assume that the single letter distortion is bounded 
above by D, < 00. Although we write integrals for 

ability of eventual extinction of the process. Letting m 
denote the expected number of offspring from a single 

expectations we can include discrete and mixed distributions particle we have the following. 
merely by using Lebesque-Stieltjes integrals. For discrete 
distributions this is equivalent to replacing integrals by Theorem I: For the SSBP defined previously 

sums. 4 = 1, ifm < 1 (8) 
The following equivalent definition of the rate-distortion 

function is readily derived from Haskell [S] 4 < 1, ifm > 1. 69 

Wo) = max min - 
s 

4 (z) dz 1% W(Y) 
k-0 W(Y) s 

l  exp C-K@(V) - Do)1 dY (3) 
where w(y) is a probability density defined on the reproduc- 
tion alphabet. Assume that the optimizing values of p and 
w(y) in (3) are known and given by p. and w,(y), respec- 
tively. p. and w,(y) depend implicitly on Do. Letting 
w,(y 1 z) denote the optimal “test channel” we then have 
the following relations (see [6, pp. 37, 901): 

w,(Y I 4 = W,(Y) exp [ 7% a, y)]W 

[A(z)] - l = 
s 

we(u) exP C-P0 d(z,Y)l dY (9 

Wo(Y> = s  Wo(Y I M4 d-2 (6) 

Wo) = - p,D + 
s 

q(z) log A(Z) dz. (7) 

We denote a sequence of source letters of length I by & a 
like sequence from the reproduction alphabet by yz, and 
cumulative distortion between the two by d(z’,y’). 

B. Branching Processes 

Thus we see that if the mean number of offspring per parent 
particle is strictly greater than one, there is a nonzero 
probability that the process survives forever. 

Now let us allow a slight generalization in the process. 
We will consider the pk(v) to be time varying according to 
an underlying i.i.d. stochastic process {&}r= o, where 
& E E, and E is the space of possible environments for 
each generation, and pk(v) = Pr,(v), where 9$(v) is a 
collection of distributions for t E E. Thus at each generation, 
a distribution S&v) is picked according to an underlying 
distributionf(5) and for that generation all parent particles 
give rise to offspring according to the g&v) that was chosen. 
Conditioned on the environments, the number of offspring 
are independent both within a generation and from gener- 
ation to generation. Such a process is called a branching 
process with random environments (BPWRE) and was 
first studied by Smith and Wilkinson [ 111. The random 
environments, of course, refer to the randomization of the 
offspring distribution from generation to generation. 

To establish the optimality of tree codes we shall need the 
extinction criteria for a BPWRE. Let my be the expected 
number of offspring due from a parent particle given 
environment t. Let a< = g&O) be the probability that a 
parent particle has no offspring, given the environment r. 
Then as shown by Smith and Wilkinson rlll, the following 

A generalized branching process may be defined as fol- 
lows. Beginning with a single “particle” at discrete time 

theorem governs- the probability of extincti&. We denote 

k = 0, let each particle give rise to new particles (offspring) 
expectation with respect tof(c) by EC. 

with probability distribution pk(v) = Pr (a single particle Theorem 2; Let the probability of eventual extinction be 
at time k gives rise to v new particles). The total number of 4, and assume Erllog mrl < 00. Then 4 = 1 if 
particles given birth to at time k + 1, N(k + 1) is termed 
the generation size .at time k + 1. After a parent particle EC log (m$ < 0 (10) 

gives rise to its offspring, it is no longer counted. If, for and 4 < 1 if 
some k, none of the N(k) parent particles given rise to 
offspring, the branching process is said to become extinct. 
Then N(k + t) = 0, for t > 1. G iven a generation time k, 
each parent particle is assumed to give rise to offspring 
independently of other parent particles both in that gener- 
ation and otherwise. Note that here we allow the offspring 
distribution pk(v) to vary from generation to generation, but 
require that within a generation each parent particle give 
rise to offspring according to the same distribution Pi. 
The reason for this more general model will soon become 
apparent. 

If the generalized branching process has the same dis- 
tribution pk(v) for all generations, the process is a strict- 
sense branching process (SSBP). This is the process used in 
[1] to establish the tree coding theorem. A standard result 
from the theory of SSBP [7]-[lo] concerns 4, the prob- 

and in addition 

We see that for a BPWRE we are mostly concerned with 
whether or not the geometric mean exp {Et log (m&} is 
greater than one. The second criterion (12), known as the 
catastrosphe criterion, requires that the probability -of 
almost catastrophic environments (which cause all parent 
particles to produce no offspring with high probability) be 
“small.” We shall show that except when the source is 
symmetric the branching process used by Jelinek [l] is not 
a SSBP but is instead a BPWRE. Consequently the extinc- 
tion criteria used in [1] is valid only for symmetric sources, 
and the proof in’ [l] applies only to symmetric sources. 
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III. TREE CODES AND BRANCHING PROCESSES 

In Jelinek’s paper [1] a random tree code of rate 
R A In (g)/n, > R(D,) is constructed with g branches - 
em:nating from each node. Along each branch are placed 
yto symbols, drawn at random from the reproduction 
alphabet according to the density w,(y). The object is to 
find a path through the tree that has a time averaged 
distortion close to Do. 

Associated with such a tree code, Jelinek defines the fol- 
lowing stochastic process, which we will call the tree coding 
process. Beginning at the origin node, extend all paths to a 
depth of I symbols. Keep as survivors all paths whose 
associated length 1 reproduction sequences are in the set 
s(s,z, ‘>, where zlz represents the first 1 source outputs, and 
s(6,z’) is defined by 

W,zZ) Ai YE: d(zZ,yZ) < I(D, + 6), log 
( 

WOCY’ I z’) 
Wo(Y z, 

where 

This constitutes the first cycle in the process. Now extend all 
paths that survived the first cycle to a further depth I and 
compare with the second I source symbols, keeping those in 
S(~,Z~~). This is the second cycle of the process. Similar 
cycles are continued unless and until the process terminates 
due to no paths in a cycle being extended. ’ 

Note that the process may never terminate, and we shall 
be vitally interested in the probability of this event. Also 
note that any path that survives satisfies d(zz,yz) < I(D, + 6) 
along each of its length 1 intervals. Hence its time average 
distortion is at most Do + 6. Let us further adopt the 
convention that should the process terminate we start a new 
process by extending some path in the terminating cycle that 
is an extension of a node that survived all previous cycles. 
Starting from this node we are dealing with a new tree 
coding process. If it terminates we start yet another, etc. 

When a process terminates we incur distortion at most 
ID, for the terminating cycle and at most l(D, + 6) for 
each preceding cycle (D, is the maximum per letter distor- 
tion). Should we, after M such restarts, start a process that 
survives forever we have, for N overall cycles, an average 
overall distortion of at most 

W(Do + @ I. 

Clearly, as N becomes large, the 
to Do + 6, if E(M) is finite. 
shows, E(M) will be finite if 4, 
termination of the process, is strictly less than one. 

average distortion will tend 
As the following theorem 
the probability of eventual 

Theorem 3: Let 4 be the probability of eventual termina- 
tion of the tree coding process. Let the process be restarted 
whenever it becomes extinct. Let M represent the number 
of times we restart the process. If 4 < 1, then E(M) < 00. 

Proof: Since the termination of a process that termi- 
nates at cycle k is independent of the number of potential 
offspring in cycles k + 1 and beyond, the probability of 
termination of a restarted branching process is independent 
of the preceding processes. Therefore, 

Pr (M restarts followed by survival) = 4”( 1 - 4) (15) 

E(M) = c i@(l - 4) = L 
l-4 

(16) i= 0 

which is finite if 4 < 1. 

Thus in order to establish the optimality of random tree 
codes for source coding we need only demonstrate that the 
probability of termination of the tree coding process is 
strictly less than one. 

We now associate the probability of termination of this 
process with the probability of extinction of a related 
branching process defined as follows. Each cycle is con- 
sidered to be a generation. Each starting node in a cycle 
is a parent particle and each surviving path a descendant. 
Clearly the probability of termination of the tree coding 
process and the probability of extinction of the branching 
process are one and the same. We now are concerned with 
finding criteria for which this branching process has prob- 
ability of extinction strictly less than one. 

In [1] the noncertain extinction of the branching process 
is established by demonstrating that the expected number 
of offspring, averaged over all source and reproduction 
alphabet sequences, is greater than one for some sufficiently 
large 1. From Section II we know that this establishes non- 
certain extinction if the branching process is a SSBP. How- 
ever, except for symmetric sources, the branching process 
is not a SSBP. This is because in a SSBP the distribution 
on offspring from a parent particle remains the same from 
generation to generation. However, note that in the tree 
coding process, at a given cycle or generation, all paths are 
compared to the same source sequence. If that source 
sequence is an atypical one, then all paths in that generation 
are adversely affected (are less likely to encode within 
Do + 6). Since 1 is finite, atypical source sequences will 
occur with probability one (except for symmetric sources, 
where all sequences are typical in this sense). This dependence 
of the offspring distribution on the source sequence thus 
violates one of the hypotheses of a SSBP. Since the source 
outputs are independent, the offspring distributions vary 
from generation to generation in an i.i.d. fashion, and we 
have a BPWRE. The environments process is simply the 
sequence of source outputs taken I at a time. We, therefore, 
can identify c = 2’. 

It would be nice at this point if we could simply apply 
the BPWRE survival criteria to the tree coding process. 
If this were to yield a probability of extinction less than one 
then the tree coding theorem would be proved. Un- 
fortunately, the discard criterion S(6,zz) is too severe in 
general. This is because the two conditions for yz to be in 
S(6,z’) place upper and lower bounds on d(z’,y’). For 
asymmetric sources and certain values of zz these bounds 
may define S(6,zz) to be the null set (i.e., the upper bound 
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is smaller than the lower bound). Whenever such a Z’ occurs 
the tree coding process definitely terminates, and since such 
a 2’ will eventually occur with probability one it follows that 
4 = 1. However, as we shall show, a modified discard 
criterion results in 4 < 1 and allows a proof of the optim- 
ality of tree codes. The following example demonstrates 
that S(6,zz) can be empty. 

Example: Let the source be binary with p = Pr (z = 
1) = 0.1 and 4 = Pr (z = 0) = 0.9. Take d(z,y) to be the 
Hamming distortion measure (zero if z = y, one if z # v> 
and take Do = 0.05. Then from Berger [6, p. 371 we have 

w,(l) = (p - D,)/(l - 20,) = 0.05556 VW 

w,(o) = (q - b,)/(l - 20,) = 0.94444 (1W 

empty. Thus whenever the source outputs I ones in a row 
during a cycle time the tree coding 
Also since 

process terminates. 

Pr (zl = 1”) = (0.1)’ (29) 
this happens in a finite time with probability one. Indeed 
E(T) = 10’. * 

The preceding example demonstrates the impossibility of 
approaching the R(D) curve using tree codes with the 
S(6,zz) discard criterion. It is not difficult to show that a 
similar problem arises whenever the binary source is 
asymmetric. With the extinction criteria for a BPWRE in 
m ind we shall define a new discard criterion and proceed to 
prove the tree coding theorem. 

exp (- po) = Do/(1 - Do) = 0.05263 (W IV. PROOF OF TREE CODING THEOREM 

PO = -log (0.05263) = 2.94444 (17d) In order to prove that random tree codes are suitable for 
source encoding with respect to a fidelity criterion at rates 

W-D,) = H(p) - H(D,) = 0.12657 nats. (17e) and average distortions arbitrarily close to the R(D) curve, 
For yz to be in S(6,z’) (13) requires both it suffices to show that the associated branching process has 

d(zZ,yZ) < I(& + s> 
probability of extinction strictly less than one. However, 

(18) as the example in Section III illustrates, the discard criterion 
and s(&z’) is, in general, too stringent to ensure this. Thus we 

log [Wo(YZ I ~‘>lw0(y?1 < wwo) + 3rl* (19 
define a new discard criterion S’(S,z’) by 

The upper bound on d(z’,y’), for yz E S(&Z’), is easily S’(S,i”) & {y”: d(z’,y’) < D(z’) + Is} (30) 
evaluated where 

d max = &Do + S) = QO.05 + 6). (20) D(z’) & 
s 

4z’,Y’)w,(Y’ I z’> dYZ. (31) 
The lower bound follows from the second condition (19) and 
extensions of (4) and (5) Note that s D(z’)q(z’) dz' A ID,, so that if the branching 

process survives then by the law of large numbers the 
WoCYZ I zZ) = wo(yz) exp [-p. d(zz,yz)]l(zz) (21) average target distortion (l/AU) c,“= 1 D(zkz) + S will tend 

[n(z”)] - 1 = 
s 

to a value less than Do + 6 + A, for any A > 0, as the 
w,(Y? exP C-P0 d(zZ9YZ)l dY’. (22) number of depth 1 encoding cycles N + 00. For probability 

of extinction 4 < 1 the average additional distortion due to 
Taken together (19) and (21) yield restarting is upperbounded by E(M)D,/N, which tends to 

4zZ,y? 2 U/Po)[ln 42’) - WDO) - W W I (2%  zero as N + m . Therefore, proving that 4 < 1, for the 
BPWRE associated with the new discard criterion, will 

as the lower bound on d(z’,y’), for yz E S(S,z’). Entering establish the existence of random tree codes with rates 
numerical values (17) in (22) yields for Z’ = l’, the sequence arbitrarily close to the R(D) curve. Also since E(M) is the 
of 1 ones, expected number of restarts, averaged over all codes and 

[WZH - l = lkoc9 + w,(o) exP (- Po)lZ 
possible source sequences, there must exist at least one 
deterministic code for which the expected number of re- 

= (0.10526)’ (24) starts, averaged over all source sequences, is no greater than 

so that the lower bound on d(z’,y’), for Z’ = lz, is 
E(M). The encoding algorithm used for the random code 
can, therefore, also be used with such a deterministic code. 

dmin(l ‘1 = lCO.72161 - 0.2264271. (25) First let us establish the following lemma that will prove 
useful in the proof of the main theorem. 

Therefore, S&l’) is empty if Lemma 1: Define 

or equivalently 
(26) p(z’> = 

s 
Wo(Y’> dYZ (32) 

S’(6,z’) 
Z(0.72161 - 0.22642~) > QO.05 + 8) (27) which is implicitly a function of 6. Then 

or 
~ 0.67161 > 6 + 0.22642~. (28) 

It is easily seen that even for moderate values of y = R - 
u R(D,) and 6 = target distortion - Do, the set S&l’) is 

P(z’) 2 [qz”)] - l( 1 - D,21s”l) exp [poD(zz) - pals]. 
(33) 

Proof: Define 

S”(&z’) = {y': Id(z',y') - D(z’)l < Is} (34) 
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and note that S”(6,zz) c S’(6,z’). Therefore, 

P(zZ) < 
s 

Wo(Y’) dYZ (3% 
S” 

a(~‘) = Pr none of the gzlno nodes at depth 1 
are in S’(6,z’) (46) 

where for notational convenience we use S” = S’(S,zz) and where the expectation and probability are over the ensemble 
S I = S’(6,z’). Then using (4) or (21) we obtain of random tree codes of depth 1 and rate R = In (g)/n,, 

and with symbols drawn i.i.d. according to w,(Y). Then the 
P(z”) 2 [A(z”)]- l 

s 
WOCY’ I 2’) exp CPod(z’,Y’)] dY’ (36) conditions of Theorem 2 that ensure 4 < 1 can be written 

S” as 

= P<z?l- l exp CPoW~“)l s Wo(YZ I z? 
S” 

l  exp {PoCdkZ9YZ) - ~(~13) dYZ 

2 C~(z?l- l exp [IPoW”) 

s l  exp (-PolS) Wo(YZ I z? dY’ 

S" 

(37) 
s 

q(z’) log [m(z’)] dz’ > 0 (48) 

and 
(38) 

1 q(z’) log [l - a(~‘)] dz’ > - 00. (49) 
where the last step follows from (34). Defining 

Since m(zI; < gz’“o (47) will follow if we can establish (48), 

P,IzW = 
s 

Wo(yE I 2’) dYZ 
A 

(39) which we now proceed to do. Since all gzino nodes at depth 
I have the yz identically distributed (although not independent 
due to the tree structure) we have 

P(z’) > [A(z’)]-’ exp (poD(zz) i po~~)P,@‘) (40) m(z’) = s’l”“P(z’). wo 

where $,,, depends implicitly on z’. Note that Therefore, from Lemma 1 

E,, I zd(zz,yz) = D(z’) = i Nzi) (41) m(z’) > gz’“o[~(zz)]- ‘(1 - Dm2/a20 exp [pod - P0lsl 
i= 1 

and (51) 

vary I z d(z’,y’) = C var d(zi9Yi) 
and 

i= 1 

< 1Dm2 (42) s 
q(z’) log [m(z’)] dz’ 

since d(zi,vJ E [O,D,] and the {d(zi,vi)}E= 1 are independent 
when conditioned on 2’. Therefore, from (34) and 

> I[ln (@)/no] + log (1 - Dm2/a2Z) - p&j 

Chebyshev’s inequality + q(z’)[ -log Q ’) + poD(zz>] dzz 
\ s 

(52) 

1 - py 1 .(S”) < vary 1 z 42’9Y’) < Q?12 
12a2 16 2 (43) > l(R - PO@ + 1% 3 + IPoD 

and for all zz < - 
s 

q(2’) log A@“) dzz (53) 
p,,,(S’) > 1 - (Dm2/S21). (44) 

Combining (40) and (44) we obtain (33) which completes the ’ 
provided 1 is large enough so that 

proof of the lemma and allows us to proceed to the follow- 1 - D,2/621 > 3 (54) 
ing crucial theorem. or 

Theorem 4: Let an i.i.d. source have marginal density 
q(z), let Do be a desired average distortion and let d(z,y) 
be a single letter additive distortion measure bounded 

Now using 

above by D, (and below by zero). Then for any y > 0 there 
exists a tree code of rate R = R(D,) + y, an lo < 00, and 

I> - 2D,2/62. (55) 

R(D) = --POD + 
s 

c?(z) 1% w dz (7) 
a 6, > 0 such that for I > lo and 0 < S < 6, the asso- 
ciated BPWRE induced by the tree coding process with we have 

discard criteria S’(S,zz) has probability of extinction 4 
strictly less than one. s 

q(z’) log [m(z')] dz’ > l[R - po6 - R(D,)I + log 3 

Proof: Remember that we can identify & = zkz, the 
kth block of source outputs taken 1 at a time. Now define 

- 16 - PO@ + log 3 - 

>O (56) 

m(z’) = E number of nodes yz at depth 1 that for 6 small enough and 1 large enough provided y > 0 is 
are in S’(S,zz) (45) tied. 
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Having thus established (47) and (48) we now turn to (49) 
to complete the proof of the theorem. First note that if all 
9 ‘Ino nodes are discarded (i.e., not in S’), then yl’, the first 
node (lexicographically in the code) is also not in S’(S,z’). 
Therefore, using (32), 

a(~‘) < Pr (ylz 4 S’(S,z’)) 
= 1 - P(zZ) (57) 

since the components of yl’ are i.i.d. 
However, from Lemma 1 

according 

a(zZ) < 1 - [A(zz)]-l(l - Dm2/a2Z) exp cp,D(z’) - pOZ6] 
(58) 

and 

s 
4k’) 1% Cl - a(~‘)] dz’ 

’ 
s 

q(z’)[ - log n(z’) + pOD(zz) - p&j + log +] dzl 

- - -R(D,) - p,za + log 3 
> -00 

provided I is at least as large as in (55). Q.E.D. 

Then applying Theorem 3 and the usual argument that at 
least one code in the ensemble is as good as the average we 
have the desired result. 

Theorem 5: For any i.i.d. source and bounded single letter 
distortion measure there exist tree codes whose performance 
is as close to the R(D) curve as desired. 

As noted prior to Lemma 1, we can also infer that an 
algorithm based on the S’(&z’) discard criterion will be 
usable. 

V. SUMMARY AND CONCLUSIONS 

We have shown that Jelinek’s proof of the optimality of 
tree codes for encoding i.i.d. discrete-time sources with 
respect to a fidelity criterion is valid only for sources that 
are symmetric. By modifying the discard criterion and using 
results from the theory of branching processes with random 
environments, we were able to reestablish the optimality of 
random tree codes for asymmetric sources. The need for a 
discard criterion dependent on D(z’) has been encountered 
by Dick, Berger, and Jelinek [12] in trying to encode outputs 
of a discrete-time N(O,l) Gaussian source. The preceding 
development indicates that the use of the metric d(z,y) - 

D(z), instead of d(z,y) - D,, is necessary (positive metrics 
being desirable). In fact, Dick, Berger, and Jelinek found that 
a more extreme dependence on z was needed. 

It should be noted that the mean-squared error criterion 
d(zi,Yi> = (zi - yi)2 does not meet our boundedness 
requirement. However, it is obvious from the proof that this 
requirement is not necessary in general. In particular it would 
be sufficient if for all zz 

c d(z',y')w,(y') dy' < A < 0 (59 
J,z $ sya,z’) 

so that restarting a terminated process incurs finite distor- 
tion; and further for all zz either 

or 
Py,z(s”) = 1 - o(l) (6W 

so that an equation similar to (44) results. While we have not 
yet done so, we conjecture that (59) and (60a) or (60b) hold 
for all reasonable sources and distortion measures. 
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