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This paper explores the structure and performance of optimal finite state
machines used to test between two simple hypotheses. It is shown that time-
invariant algorithms can use knowledge of the sample size to obtain lower error
rates than in the infinite sample problem. The existence of an optimal rule is
established and its structure is found for optimal time-varying algorithms. The
structure of optimal time-invariant rules is partially established. The particular
problem of testing between two Gaussian distributions differing only by a shift
is then examined. It is shown that the minimal error rate achievable after N'
samples goes to zero like exp[—(In N)/?].

1. INTRODUCTION

Let X,,X,,.,Xy be independent observations, each distributed
according to a probability measure 2 over the sample space 2. Consider the
problem of testing between the two hypotheses:

Hy Z =2,
1
H: 2=2, M
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where 2, and &, are known measures. The a priori probabilities on the
hypotheses 7, and 7, = | — =, are also assumed known.

With respect to this problem, an m-state time-invariant decision rule
(Hellman and Cover, 1970) (¥ is specified by a triple (f, d, T,), where f is
the state transition function, d is the decision function, and T, is the initial
state of memory. The memory state space is denoted by S = {1, 2,..., m}.
At times n =1, 2,..., N, transitions are made from state 7,_; to state
T, =f(T,_,,X,) €S, and at time N, a decision dy. = d(Ty)e{H,, H;}
is made. Thus, the operation of the decision rule may be summarized by

Th =f(Thy,X)€ES n=12..,N (2a)
dy = d(Ty)e{H,, H,}. (2b)

An error is said to occur if dy 5= H, , where H, denotes the true hypothesis.
The objective is, for given m, N, #,, P, , my, =, , to find the rule (f, d, T;)
which minimizes the probability of error Py(e) = Pr(dy %= H)).

If f is a single-valued mapping, then (¥ is said to be a deterministic rule.
If fis a randomized mapping, then (¥ is called a randomized or stochastic rule.
Elementary decision theoretic considerations show that the error probability
cannot be lowered by randomization in d or 7,. However, the optimal
time-invariant algorithm usually involves randomization in the transition
function f (see Hellman and Cover, 1971; Hellman, 1972).

Let

P*(m,N) = ic?f Py(e) (3a)
denote the infimum of P,(e) over all m-state, randomized, time-invariant
decision rules (%, , and let

Py*¥(m, N) = dé?(flm Py(e) (3b)

denote the infimum over all deterministic, m-state, time-invariant, decision
rules, det &Z,, . Since deterministic rules are special cases of randomized rules,

PX(m, N) < Py*(m, N} Vuy. (4)

In the infinite sample problem, definitions (3a) and (3b) extend in a natural
way to

Py(e) = lim P,(e) (5a)
P¥(m, ) = inf Po(e) (5b)

Py*(m, oc) = d(ialt]ﬂf; P(e). (5¢)
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Finite memory rules governed by (2) are time-invariant. Time-varying
finite memory decision rules are described by

To=f(Tus, Xo n) €S (6a)
dy = d(Ty,N)e{H,, H,}. (6b)

Since time-varying rules include time-invariant rules
Pg(m, N) < P*(m, N), )

where P} (m, N) is the infimum of Py(e) over all m-state time-varying
algorithms. We do not need to consider separate infima over deterministic
and randomized time-varying rules, since, as shown later in this paper, they
yield the same value.

In this paper, we examine certain aspects of the finite sample problem for
both time-varying and time-invariant algorithms. First, in Section 3 we discuss
the definition of P*(m, N) and demonstrate an unexpected behavior. Then,
in light of the fact that an optimal rule does not exist for the infinite sample
problem, we prove in Section 4 that an optimal rule does exist for any finite
sample problem. We also prove that when #;, and 2, represent continuous
distributions, there is a deterministic optimal rule for the time-invariant
problem. There always is a deterministic optimal rule for the time-varying
problem.

Attention is then focused on time-varying algorithms. In Section 5, we
show that the optimal time-varying rule is deterministic and of a likelihood
ratio form (as therein defined). In Section 6, we examine two-state time-
invariant rules, and under certain assumptions, we show that the optimal
time-invariant rule is also likelihood ratio.

The problem of testing between two Gaussian distributions differing only
by a shift is dealt with in Section 7. It is shown that for N large,
P*(2, N) ~ exp[—2(2 In N)/2]. Previous work (Hellman and Cover, 1970)
has shown that P*(2, c0) = 0, in agreement with the limit of this expression.
However, the extremely slow rate of approach (slower than algebraic) was
not hinted at by the infinite sample theory. The derivation of this behavior
allows us to make a conjecture concerning the asymptotic behavior of
P*(m, N) for this problem.

2. History

There are two distinct formulations of the finite memory hypothesis testing
problem. One formulation has a finite time memory (Robbins, 1956; Isbell,
1959; Samuels, 1968), the other a finite state memory (Cover, 1969; Hellman
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and Cover, 1970). The latter formulation will be used throughout this paper.
It is the counterpart to minimal sufficient statistics for finitary decision
algorithms. Decision~-making by automata (Tsetlin, 1961; Krylov, 1963;
Chandrasekaran and Shen, 1968; Fu and Li, 1968) is a closely related problem.
We will first deal with time-invariant algorithms. The infinite sample
problem was solved by Hellman and Cover (1970). They showed that

m-1\1/2 __
P*(m, 00) = min g 2("07;13:_1 _) ] 1 ) T s ’”1% (8)

is the greatest lower bound on the asymptotic error probability achievable
by an m-state algorithm. The parameter y depends only on &, and £, ,
and will be defined shortly. If P*(m, o) equals =, or =y, a degenerate
situation exists in which the same decision is made in all states. In Hellman
and Cover (1970), it is also shown that, in general, there is no optimal rule,
but only an e-optimal class rules. That is, for any € > 0, there is a rule in the
class which has P_(e) << P*(m, o0) + ¢, yet no rule can be found for which
P (e) = P*(m, o0).

The class of e-optimal rules is characterized as follows: Let /max be the
essential supremum and /min be the essential infimum of the likelihood ratio
I(x) = dPy[d?; . For most problems, these are just the maximum and
minimum values of /(x). The parameter y in (8) i1s equal to Imax/!min -
Assuming that there is nonzero probability of observations with likelihood
ratios of Imax and Jmin , the e-optimal class of rules is given by

f@,x)=1i+1, 2<i<m— 1 and I(x) = Imax
=i—1, 2L i< m—1and [(x) = lmin
=2, with probability 8 if { = |
and /(x) = Imax (9a)
=m— |, with probability k8 if 1 = m

and /(x) = Imin
=1, otherwise
and
d(i) = H, 1> mf2

= H, << mf2. (9b)

This rule is a saturable counter, adding +1 (if possible) to the state of
memory on maximum likelihood ratio observations; adding —1 (if possible)
on minimum likelihood ratio observations; and retaining the old state of
memory on all other observations. In addition, transitions from state 1 to
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state 2, and from state m to m — 1, are made with small probabilities § and &8,
respectively. This improves performance over the case, 8§ = 1, &k = 1, for
two reasons. First, decisions made in states 1 and m are the least likely to be
in error. Making 8 less than 1 increases the fraction of decisions made in these
states, thereby lowering the error probability. Second, if there are asymmetries
in the problem (e.g., 7, 5% m), choosing % to offset these asymmetries lowers
the error probability. If % is set to its optimal value [Hellman and Cover, 1970,
Eq. (57)], the probability of error of the machines described above tends to P*,
as 8 > 0 tends to zero.

It is counter-intuitive that the e-optimal class requires randomization. If
P, and 2, represent continuous distributions, randomization is not needed
(Hellman and Cover, 1970) for the e-optimal class. However, for discrete
distributions there can be arbitrarily large discrepancies between the perform-
ance of randomized and deterministic rules (Hellman and Cover, 1971).
To be precise, for any m < o0 and e > 0, there exists a problem
(P, P, , m,m) for which P;*(m, c0) > 4 — e and P*(2, o0) < e. Thus,
the amount of memory saved by randomized rules can be arbitrarily large.

On the other hand, Hellman (1972) has shown that in a certain sense
deterministic rules are asymptotically optimal for large memories. This may
seem somewhat surprising, but, of course, there is no contradiction, as seen
by a more precise statement: For any problem (%, , &, , #, , m), there exists a
B < o0 such that for all b the optimal deterministic rule with B + b bits in
memory has a lower error probability than the optimal randomized rule with b
bits in memory. Thus, for large memories the fraction of bits lost by using a
deterministic rule tends to zero. '

Horos and Hellman (1972) use a slightly different model and find the
e-optimal class of rules to be deterministic. This model allows a confidence
to be associated with each decision, errors being weighted according to the
confidence with which they are made.

Flower and Hellman (1972) examined the finite sample problem for
Bernoulli observations. They found that most properties of the infinite
sample solution carried over. For optimal designs, transitions were made only
between adjacent states and randomization was needed. However, in the finite
sample problem, randomization was needed on all transitions toward the
center state (i.e., on transitions from states of low uncertainty to states with
higher uncertainty). Samaniego (1974) proves that this structure is optimal
for m = 3 when attention is restricted to symmetric machines and problems.

Flower and Hellman found that a symmetric problem (e.g., testing whether
the bias of a coin is § or } with equal prior probabilities) did not necessarily
have a symmetric solution. Within the class of rules they studied, the optimal
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rule was asymmetric for m odd, but was symmetric for # even. From Section 7
of this paper, it will be seen that the initial distribution they used is not
optimal for m even and that the optimal machine is therefore not symmetric,
even when NN is even. :

Lynn and Boorstyn (1972) examined the finite sample problem for obser-
vations with continuous symmetric distributions. They calculated the
probability of error for algorithms of a particular form, which they call finite
memory linear detectors. For this type of detector, a transition occurs from
state 1 to1+ 1 if 2 <m— | and X,, > D, a transition occurs from state ¢
toi — 1if7 > 2and X, << —D, and the transition is from state 7 to itself in
all other cases. The threshold D is optimized over the nonnegative real line.
The authors note that this form of machine is somewhat restrictive, but that
its simplicity makes it attractive. It resembles the e-optimal solution to the
infinite sample problem in all but two respects. First, the §-randomization on
transitions from the end states is missing. Lynn and Boorstyn found that
using a larger threshold in transitions out of states 1 and 3 (equivalent to
randomized transitions) lowered P(e) by approximately a factor of 2. Second,
moves are made on very large observations, not on large likelihood ratio
observations. For the Gaussian example treated by Lynn and Boorstyn
(and also Section 7 of this paper), there is no difference between x being large
and I(x) being large since the likelihood ratio is monotone in x. However,
for the problem of testing between two Cauchy distributions, one centered at
—1, the other at -1, the likelihood ratio /(x) — 1 (no information) as
| & | — co. This problem is easily eliminated by regarding ¥ = log I(X) as
the observation. A problem which is symmetric in X also will be symmetric
inY.

It is reasonable to expect multistate transitions to occur in finite sample
problems. Lynn and Boorstyn tried this modification on a three-state machine
for Gaussian statistics. However, they found that allowing multistate
transitions decreased P(e) by less than 109, and for eight or more obser-
vations the decrease was less than 39. Reasons for this behavior will be
devcloped in Section 8 of this paper.

Shubert and Anderson (1973) studied a form of generalized saturable
counter and found performance to be close to optimal. The simplicity of
this class of rules makes it attractive for implementation on binary data.
Shubert (1974) also studied an interesting variant of the Bernoulli hypothesis
testing problem in which the machine observes not only {X,}, but also two
reference sequences {Y,} and {Z,} with biases p, and p,, respectively. He
showed that if memory is increased by one bit, then a deterministic machine
can perform better than the original optimal randomized machine.
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Chandrasekaran and Lam (1975) studied an interesting class of deterministic
rules for the symmetric problem and conjectured that the optimal
deterministic rules lies within this class.

Samaniego (1973) worked on the problem of estimating the parameter of a
Bernoulh distribution and, restricting attention to a certain form of machine,
found minimax solutions using a variant of the mean square error loss
criterion. If p is the true value of the paramecter and p is the estimate, his loss
function is ( p — p)*/p(1 — p). The machine is restricted to make transitions
only between adjacent states and to move up on heads and down on tails.

Hellman (1974) examined the infinite sample Gaussian estimation problem
and showed that the problem can be reduced to a quantization problem.
This result also applies to a larger class of infinite sample estimation problems.

All algorithms discussed thus far have been time-invariant, and while
time-varying algorithms are less attractive to implement, their theory is
sometimes simpler and provides insight into the design of time-invariant
algorithms. Mullis and Roberts (1968) worked on a sequential decision
problem with time-varying finite memory. The cost for an observation and
the cost for each type of error were variable. They found necessary conditions
for an optimal design and used an iterative technique to find an approximation
to the optimal rule.

Cover (1969), concerned with the infinite sample time-varying problem,
was able to show that a four-state memory (two bits) was sufficient to ensure
that the probability of error tends to zero. One bit was used to remember the
current favorite hypothesis and one bit was used to keep track of the success
or failure of test blocks, which became increasingly larger. Koplowitz (1974)
has recently shown that Cover’s rule can be reduced to a three-state form.
He also shows that for any m — 1 hypothesis problem, the optimal m-state
time-varying rule has zero asymptotic error probability. Further, Koplowitz
proves that, in general, m states are necessary for this behavior. Hirschler
and Cover (1975) have shown that eight states are sufficient to determine the
rationality or irrationality (excluding a null set of irrationals) of the parameter
of a coin, given independent coin flips.

Wagner (1972) uses rules similar to Cover’s (1969) to estimate the mean of
a distribution. For Bernoulli observations, Wagner’s scheme is very close to
optimal, since its maximum absolute error is at most 1/m, with m-states
in memory. Using Koplowitz’s ideas, it can probably be shown that
1/(2(m — 1)) is a lower bound on maximum absolute error.

Muise and Boorstyn (1972) showed that for the finite sample problem, the
optimal time-varying rule essentially stores a quantized version of the
likelihood ratio, although the quantization is time-varying and not of any
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simple form. These optimal detectors result in the fastest decay of error
probability with increasing sample size. In Section § of this paper, we develop
simpler proofs of some of these results. The results of Cover (1969) that
four states allow the error probability to tend to zero cannot be (or at least
to date have not been) inferred from Muise and Boorstyn’s work.

Roberts and Tooley (1970) attacked the problem of estimating a parameter
with a time-varying finite memory. They restrict their rules to be of a special
form which, although not optimal in general, does make sense (and is probably
optimal) for many problems of interest. This restriction is that a transition
take place from state ¢ to state § at time k if X, € (6;_4(1, &), 6,(¢, £)). Thus,
larger observations cause transitions to higher numbered states. In some
problems (such as those involving the Cauchy distribution), very large
observations yield very little information, and such a rule seems to be
distinctly suboptimal. However, for Gaussian statistics, large observations
are very informative and the optimal unrestricted rule is probably of the given
form. Koplowitz and Roberts (1973) unified and extended this work. In
particular, their demonstration of necessary and sufficient conditions for the
optimal state transition function should prove valuable.

Tooley and Roberts (1973) extended these ideas to estimating random
processes with finite memory. Baxa and Nolte (1972) used rules similar to
those of Roberts and Tooley (1970), except for the detection, as opposed to
the estimation problem. Their rules, while suboptimal, show favorable
performance for even three bits of memory.

Mullis and Roberts (1974) have formulated a more general finite memory
model which includes control theory problems. While general results are
probably not possible, Mullis and Roberts were able to establish limited
results within this framework.

Work on the two-armed bandit problem with a finite memory constraint,
also known as the problem of automata in random media, is of historical
significance to this problem area and is discussed by Fu and Li (1968) and
Cover and Hellman (1970).

3. DeFiNITION OF P*(mi, N)

The definition used for error probability in the infinite sample time-
invariant problem (Hellman and Cover, 1970) is

N
Po() = E Jim = ¥ en, (10)
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where e, equals 1 or 0, accordingly, as the nth decision is or is not in error.
The limit in (10) exists with probability one, but its value depends on which
hypothesis is true and in which recurrent communicating class (Hellman and
Cover, 1970) the machine becomes trapped. The expectation need only be
taken over these possibilities.

An alternative definition

Pe) =Jbl_r)130 Eey (11)

is possible so long as attention is restricted to machines for which the indicated
limit exists. When it does, the values of P(e) and P,(e) will agree. Thus, the
more complex definition (10) is only needed to ensure that periodic machines
(where certain states can be occupied only at multiples of some period) are
included in the class over which we minimize P,(e). From the e-optimal class
derived by Hellman and Cover (1970) and described in the previous section,
we see that some self transitions (i.e., from a state to itself) must occur with
probability strictly between zero and one. Since a periodic Markov chain
cannot have self-transitions (except those that occur with probability zero
or one), periodic machines are excluded from being e-optimal. Thus
restricting attention to machines for which the limit (11) exists would not
change P*(m, o).

In the finite sample time-invariant problem, we might try to decide between
using the definitions

Py(e) = Eey (12)
and

Py'(e) = E-jlv- Y e (13)

n=1
as the definition of Py(e). However, it is doubtful that we would think of using

Pj(e) = sup Fe,, . (14)
nFN

In all future sections, we shall use the simplest definition (12), since it is
the most tractable. However, doing so yields anomalous behavior, as indicated
by the following.

FaLse THEOREM. Using the definition (12), P*(m, N) = P*(m, o) for all
problems.
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COUNTEREXAMPLE (to positive statement of theorem). Let X be a Bernoull:
random variable with P(X = 1| Hy) = 10710 and P(X = 1| H;}) = 10720,
Then Inax = 10719/1072 = 108, iy == 1, ¢ == 10, and for my = m = 4,
P*(2, 00) = 1075 The two-state machine which achieves P*, transits from
state 1 to state 2 when X = 1 and from state 2 to state 1 with probability
approximately 10715 when X' = 0. Note that P* is achievable (as opposed to
e-achievable) because m = 2 (Hellman and Cover, 1970).

Now consider the machine which starts in state 1 and transits to state 2
when X = 1. Once in state 2, it stays there forever. Let N = 1015, As
defined in (12), the probability of error under H; is approximately 1073,
while under H, it is approximately exp(—10%) < 10-5. Thus, Py(e) =
1 X 1075 < P*(2, o0). If N were 2 X 10, then this machine would have
Pyle) = 4 x 10-° <L P*(2, ).

An even more interesting anomaly is that using (12), P*(m, N) need not
tend to P*(m, c0) as N — oo. To see this, note that if the above machine
transited from state 1 to state 2 with probability 8 when X = I, then its
error probability at time N/8 would be approximately the same as for the
original machine at time N. For example, if the sample size is 2 X 102,
setting § = 0.1 would yield an error probability of approximately 4 X 109
If N =2 x 10%, setting § = 10~ would achieve Py(e) = 4 X 109, etc.
Thus, we see that for all N such that 2 X 101 < N < o0, P¥2, N) <
2 X 107 L& P¥(2, o0) = 10-5.

Note, however, that for any fixed 8, as N — o0, Py(e) — 3, so that no
machine has a limiting error probability less than P*(2, oo). If this were not so,
the results of Hellman and Cover (1970) would be violated. It is necessary
to know NN and then to match the machine to this value of N. If we observe
fewer samples than anticipated, the resultant error probability may be
higher than predicted, but that is to be expected. However, it is unexpectedly
undesirable for the number of samples to be larger than anticipated. If our
knowledge of NV is somewhat fuzzy, this is a poor model. Frequently, we only
know that the number of samples will be large—at least as large as some
integer V. In such a situation, (14) is a better definition of Py(e).

In contrast with the time-invariant behavior, time-varying rules have an
error probability which is monotone in the sample size N. An N + | sample
time-varying algorithm can neglect the N + Ist sample. Therefore, Pf(m, N)
is nonincreasing in N, even using (12) as the definition of Py(e).

It should be noted that the above counterexample is a very asymmetric
problem. We belicve that for more symmetric problems, there is little if any
difference between using (12) and (14) as the definition of Py(e). Our belief
is supported by the following self-evident theorem.
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THEOREM 1. Let O minimize Py(e) as given in (12) with N considered fixed.
If O0s error probability is nonincreasing in n for n == N, then (U is also optimal
under definition (14) for this value of N.

The optimal machines which we find for the Gaussian problem of Section 7
will have the above property and are thus optimal using either (12) or (14).
For this reason, and also because of the intractabliity of (14), we use only the
simpler definition (12) for the remainder of this paper. This section is
intended only to post a warning sign, not to divert traffic.

4, EXISTENCE OF AN OpPTIMAL MACHINE

As has been noted, an optimal m-state rule does not generally exist for the
infinite sample problem. However, the reasons for this appear to be absent
from the finite sample problem. The existence of optimal algorithms is
established in the following theorem.

THEOREM 2. For any problem (#y,%,.n,,m) and any m, N < oo,
there exists a time-varying m-state algorithm which achieves Py(e) = Pg(m, N)
and a time-invariant m-state algorithm which achieves Py(e) = P*(m, N).

Proof. We will prove the theorem for time-invariant rules, since the
extension to time-varying rules is straightforward. The terminology in the
remainder of this section is therefore that of the time-invariant problem, and
any algorithms referred to are tacitly time-invariant.

The independence of the observations causes the memory states occupied
by the machine to form a Markov chain under either hypothesis. The action
of the state transition rule f may be described equivalently by a family of m
by m stochastic matrices P(x), indexed by x € Z. The entry in the ith row,
jth column is

Pi(®) =Pr(Ty =j| Tpoy =4, X = %), (15)
Let P® = E(P(X) | H;) be the state transition matrix of the Markov chain
under ., k =0, .

Similarly, the initial state of memory can be specified by an m-dimensional
row vector p(0) whose 7th entry is the probability that T, = ¢. Then, if

pn) = Pr(T, = i | Hy) (16)
we see that
wh(n) = w(O)[PH]". (17
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Let S, = {ie S:d(i) = H,;}, k = 0, 1, denote the decision regions specified
by the decision-function d. Then,

Py(e) = my 3, wO(N) +m 3 (V) (18)

i€s$, i€S,

so that Py(e) depends on f only through (P, P, that is, two rules whose
state transition functions yield the same (P, PW) pair will have the same
error probability if their initial states and their decision regions are the same.
Thus, we can minimize Py(e) over (f, d, T;) by fixing 7, and 4 and mini-
mizing over all allowable (P®, P} pairs and then minimizing over T, and d.
Due to the fact that randomization over T, and d is not necessary for opti-
mality, we need only be concerned with m values for p(0) and 2™ decision
functions d. Thus, if for each choice of u(0) and d, the minimum of Py(e) is
achievable (so it is a true minimum, not an infimum), then P*(m, N) is also
achievable, since it is the minimum of the m2™ minima thus found.

It can be seen that Py(e) is a continuous function (indeed an Nth degree
polynomial) of P® and P, If the region Z of allowable (P, P) is closed
and bounded (i.e., compact), then Py(e) takes on a minimum value in Z.
But, Z C |0, ]]2”‘2, so that # is bounded. Thus, all that is needed is the
following.

LeMMA 1. £ is closed.

Proof. Since the regions inducing transitions from state ¢ can be chosen
independently of the regions inducing transitions from state j, # = %™ where
% C [0, 1]?™ is the set of allowable values for the first (or any other) rows of
P® and PY). Thus, we must show & is closed. & (and hence ) are convex
because the mixture of two possibly randomized state transition functions is
yet another. &, the closure of &, is then both closed and convex. Let
p* = (py*, p1*) be an extreme point of &. Then, there is a 2m-vector
w = (W, , w;) and a real number L such that

WTP* = Z (wuiP:; + wl,»p;k,-) =L (19)
i1
and
wip >L forallped, p # p*. (20)

But, the problem of minimizing w”p over p € # is equivalent to minimizing
it over {p(x)}iLy, where py; = E(p(X) | Hy), pri = E(p{X)| Hy), and

iy pi(x) = 1. This is, in turn, equivalent to minimizing the cost in an
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m-action two-hypothesis problem with a single observation x, where p,(x) is
the probability of taking action ¢ when x is observed and w,, is the cost of
taking action ¢ when Hj is the true hypothesis. It is well known that the
minimum (Bayes’) risk is achievable, completing the proof of Lemma 1
and hence of Theorem 2.

A further dividend is provided in the following lemma.

LEMMA 2. The extreme points of B are generated by p,;(x) of the form

pu() =1, a; <l(x) < by
=0, otherwise. (21)

Proof. This allows us to show that randomization is not needed for
continuous distributions (2, , #;). The proof is a bit involved, but rests on
the fact that if, in an interval 4 < I(x) < B, action { is taken with probability
A and action j is taken with probability 1 — A, then it is possible to find a
partitioning of [4, B) into I} = [4, ;) U [a,, B) and I, = [a; , a,) such that
J1, dPx(*) = A [, dP(%), k = 0, 1. The remaining details of this proof

are omitted.

If it can be shown that Py(e) achieves its minimum at an extreme point of
the convex set of transition matrices (P?, P?), then we would know that rules
of the form (21) are optimal. We suspect that such is the case.

To make the preceding ideas more concrete, consider the problem for an
m = 2 state machine. For simplicity, denote p¥, by «; and p%, by 8, . Thus,
(2%, o, By s By) specify the (P, PM)) matrices.

It is seen that the region of allowable (a; , ;) coincides with the region of
allowable (8, , B;) and that the region of allowable (&, , a, , By, By) is just the
Cartesian square of this region. Note that 0 < «p <C 1, and for a fixed o,
maximizing or minimizing o, is achieved by invoking the Neyman—Pearson
lemma. Thus, for a given «, it is seen that «, is minimized by

Pra(x) =0 Ix) <L
=c I(x) =L (22)
=1 lx) > L,
where L and ¢ are chosen to satisfy

Pr{l(x) <L} + cPr{l(x) = L} = o . (23)
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Similarly, for a given oy , it is seen that o, is maximized by taking
Pra(x) =0 l(x) >L

¢ lx) =L (24)
=1 I@x)<lL,

Il

where now L and ¢ are chosen to satisfy
Pr{l(x) > L} + ¢ Pr{l(x) =L} = «,. (25)

By analogy to the operating characteristic of the Neyman-Pearson theory,
we see that the curves of maximum achievable and minimum achievable o,
are, respectively, concave and convex functions of «,, and are continuous
except perhaps at oy = 0 and «, = 1. This general behavior is shown in
Fig. 1. As indicated in Fig. 1, the region is symmetrical in the sense that
(0 , ) is in the allowable region if, and only if, (1 — &y, 1 — ;) is in the
allowable region. This symmetry is due to the fact that every measurable set
has a measurable complement.

1.0
@
5 o5f
&
00 L
00 0.5 1.0
Fic. 1. Region of allowable (a4, B,) and («,8,).

By using randomization, we can find a rule which achieves any point
between the upper and lower bounds. Thus, the region of allowable (o , ;)
is closed and bounded, and therefore, compact.

Suppose there are two state transition rules specified by p;;(x) and ¢,,(x)
and such that p,(x) 4 g;;(x) < 1 for all x € Z. Then, there exists a “sum”
state transition rule specified by 7;(x) = p;;(x) 4+ g,(x). It is seen that the
values of (x; , o , By, B;) for the sum state transition rule are the sums of the
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two original (e, o , By, B1)’s. Thus, if a rule which corresponds to a fixed
point on the lower boundary is added to all possible rules on the upper
boundary, a curve is traced out, as shown in Fig. 2. Then, by varying the

1.0 —
T
- - /i
e /
- 7
- /
— ///
3 / /
3 05f / 7
s /
//" //"
/ ///
7
/‘/
00 L
00 05 1.0
aglor Bg)
Fi1c. 2. Addition of two transition functions.

“fixed” point on the lower boundary, the entire region is swept out. Thus,

any (o , o) point in the allowable region can be obtained by using a rule of
the form:

pix) =1 l(x) > L,
=0 l(x) =L,
=0 L, <(x)y <L, (26)
= I(x) =L,
=1 ix) <L,

for appropriate L, , L,, ¢;, and ¢,. By analogy to the Neyman-Pearson
theory, it is seen that artificial randomization is not necessary for finite sample
problems if the measures &, and £, represent continuous distributions.
This is the same as in the infinite sample theory (Hellman and Cover, 1970).

The results of this section on the existence of optimal solutions are of use
in several ways. First, it is interesting that finite sample problems possess
optimal solutions, whereas infinite sample problems do not. Second, these
results simplify proofs in the finite sample theory. For example, we now can
deal with a single optimal rule, as opposed to an e-optimal class of rules.
To show that a rule is optimal, we can show that all other rules perform more
poorly. In the infinite sample problem, it was necessary to deal with an
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infinite sequence (an e-optimal class) of m-state rules, each of which came
closer to achieving P*(m, 00). To show that a given class of rules was e-
optimal, it was necessary to find a lower bound on error probability and show
that for each € > 0 there was a rule in the class whose error probability was
within € of P*. Third, in Section 6, we will use the concepts and intuition
developed for the two-state problem to examine the structure of optimal
two-state time-invariant rules.

5. STRUCTURE OF THE OpTIMAL TIME-VARYING RULE

In this section, we prove that the optimal time-varying rule is deterministic
and likelihood ratio in form. See Muise (1970) for an alternative formulation
and proof.

DErFINITION. A finite-memory time-varying rule is said to be likelihood
ratio if
f@,xn)=j and I(x') > I(x)
27
implies (i, x', n) = j

and

S, x,n)y=7j and k>1i
(28)
implies f(k, x, n) = j.

Remark. Under this definition, transitions depend only on the likelihood
ratio, and are upward for [ large and downward for / small.

Tueorem 3. The optimal time-varying rule is deterministic.

Remark. ‘This is decidedly not true for infinite-sample time-invariant
rules.

Proof. We first show that a deterministic initial state and decision rule
are optimal. Suppose an algorithm starts in state ¢ with probability p; . Then,

Pyle) = Z piPn(e| Ty =1i). (29)

i=1
But the error probability is minimized by making T, =i, for that
value 7, which minimizes Py(e| Ty =i). Similarly, if P(H,| Ty =1i) >
P(H, | Ty =1), thend(i) = H,is optimal. Only if Py(e | T, = #) is minimized
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for two different values of 7, or if P(Hy'! Ty =1i) = P(H,| Ty =1i), can
randomization be used without loss of optimality. However, even in these
cases, there is always an optimal rule which is deterministic.

The real problem is to show that the optimal state transition function f is
deterministic.

Suppose we are given a randomized time-varying rule with state transition
function f,(Ty_, , X, , 1), where we have explicitly included the dependence
on the external random variable w, and where w is required to be independent
of the true hypothesis and the data. Note that this formulation includes as
a special case the class of rules

T, =f(T -1 D Zn) (30)

where {Z,}_; are independent identically distributed random variables.
For a particular realization w, the original randomized rule is the deter-
ministic time-varying rule

J(Toy s Xy ).

Given w, the expected loss of f,, is denoted P, , while the expected loss of the
original randomized rule is EP, = P. But there must be at least one value
w = w,, such that P, < P. Q.ED.

The above theorem is perhaps best interpreted as saying that randomization,
when independent of the data, can be regarded as a form of time-variation,
and therefore, cannot increase the performance of time-varying rules.

We now outline a proof that the optimal time-varying rule is likelihood
ratio. We do this by showing that any rule which is not likelihood ratio can be
transformed into a likelihood ratio rule whose performance is better than that
of the original rule.

DeriNITION. For £ =0,1, je S, and 0 < n < N, let ¢, n) be the
expected probability of error at time N, given Hy and T, = j.

It is seen that e, (s, n) depends only on f(z, , #') for n’ > n and on the
decision rule d(f). In particular, it does not depend on f(, x, n') for n’ < n.
Also, for k =0,1,j€ .5, and 0 < n << N define

”k(j’ n) = Pr(ch | T, =]) (31)
It is easily seen that
7(j> 8) = Tous (M) (mous X(m) + mp(n)), (32)

so that m,(f, ) depends only on f(i, x, #’) for n’ < n.
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At time n, we will number the states in order of increasing e,(f, n), (i.e.,
e, n) < e(j + 1, n)). If this produces a time-varying renumbering of the
states, it is possible to incorporate the time-varying numbering into the
state-transition function.

LemMa 3. Under the above assumption on state numbering,

eo(js n) 2 e(y + 1, n), I<ngN-1
(33)

Proof. We must show that it is impossible for both ey(7, #) < e)(j 4 1, 7)
and ¢(7, ) < ¢(j + 1, n). But this is clear, since then state j would have a
lower risk than state j 4 1 under either hypothesis. Modifying the algorithm
by changing f(j + 1, x, # 4+ 1) to the same value as f(j, x,n + 1) for all x
would then cause ey(j + 1, #) and ¢,(j + 1, #) to take on the lower values
(7, n) and ¢,(f, ). 'T'his can only lower Py(e). Q.E.D.

Now suppose we fix the state transition rule, except for transitions made
at time n and optimize the state transition rulc only for these transitions.
If the machine is in state 7 at time #, X,,; = x is observed, and the rule
causes a transition to state 7, then the expected loss is

Pr(Ho | Ty =3, Xp = x)eg(jyn + 1) + Pr(H, | Ty =14, Xy = %)ei(jom + 1)

= Po(x) 7o(t, n) .
= B ol 1) — prmy w0 D

: (%) M@, )
T (@) moli, ) F pa) (7, m)

e(j,n 4+ 1). (34)

Clearly, T,,; = f(i, x, n) should equal j,, that state j for which (34) is
minimum. Equivalently, we must minimize the projection of the vector
(Po(x) mo(, 1), py(x) m(Z, n)) on the set {(e,(j, n + 1), (7, » 4+ 1))}2, . This
is depicted in Fig. 3. It is seen that increasing I(x) = po(x){py(x) causes the
vector to lie closer to the horizontal, thereby causing j, to take on a higher
value. Thus, (27) is satisfied by the optimal time-varying rule.

In a similar manner, it is seen that keeping x constant, but changing 7 so that
mo(7, #)[my(f, ) is increased, also causes j, to increase. Therefore, to establish
that the optimal rule satisfies (28), the second condition of the definition,
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10

j=m
j=m-1|
¥
S 05F ¢
=
(po(x) wqlin), py(x)m (i,n))
izio
T i=2 j=!
09 L = =
0.0 05 1.0
eglin+l)

Fic. 3. Geometry of the time-varying minimization.

we must show that (7, n) (and hence 7) is increasing in (i, n)fm(%, n).
This can be inferred from the above picture, since

e)(f, n, x) = e)(f(£, n, x),n + 1), (35)

where e(z, 1, &) is the expected risk under H; when T, = 7 and X, =
We summarize the results of this section in the following theorem.

TuEoreEM 4. There is an optimal time-varying rule with the following
properties:
(1)  The decision function d(i) € {H, , H,} is deterministic.
(2) The initial state of memory is nonrandom.
(3) The state transition rule is deterministic.

(4)  The state transition rule is likelihood ratio, and therefore, is of the form

fG,n &) =3  TW, <lx) <T™ (36)
where, for | <Kn < Nand 1 < 4,7 <m,
=T ST -~ <TW = 40 37)

and

> T8 > = T8, (38)
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6. Two-StaTE TIME-INVARIANT RULES

In the previous section, we were able to provide a short argument to prove
that for all m and N, the optimal time-varying rule is deterministic and
likelihood ratio. By contrast, it is more difficult to establish the same degree
of structure for the simplest of all time-invariant rules, those with only two
states. Indeed, we have not yet been successful in generally establishing that
the optimal two-state time-invariant rule is likelihood ratio.

DEFINITION. A finite-memory time-invariant algorithm is likelihood ratio
if it is likelihood ratio, as defined by Eqgs. (27) and (28), with the dependence
on n deleted. This is equivalent to satisfying Egs. (36), (37), and (38), with
the dependence on 7 deleted.

Reasoning as in Theorem 3, we find that randomizing the initial state of
memory cannot lower Py(e), and therefore, we can restrict attention to the
two deterministic choices 7y =1 and Ty = 2. Using the notation of
Section 4,

Qg = P(l)f.’ Q= p:]l2 (39)
By = Pgl 31 = P;1

and known formulas (Parzen, 1962) for the N-step transition matrix of a
two-state Markov chain, we find

Py(e) = —ij;g— [Bo 4 el — & — Bo)V]

+';;'7_1,_1791—°‘1[1—(1—a1—ﬁ,)”], Ty=1  (40a)

and

Ppyley = ﬁﬁ?{ﬂ"[l — (1 — o — BN
+ m[% 4+ Byl —ay— BN], T, =2. (40b)

THEOREM 5. Restricting attention to the class of rules for which oy + By < 1
or oy + By < 1, the optimal tewo-state time-invariant rule is of the likelithood
ratio type.

Remarks. (1) If we accept that the unrestricted optimal rule has disjoint
transition regions (i.e., if no observation can cause transitions, both from
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state | to 2 and from state 2 to 1), then the optimal rule lies in the class of
restricted rules and is thus likelihood ratio.

(2) As noted below, Freedman (1971) has shown that for symmetric
initial distributions [i.e., Pr(7) = 1) = Pr(T, = 2) = ] and P*(2, N) < },
the optimal rule must have disjoint transition regions. Although a randomized
initial state cannot lower the error probability, we believe that for symmetric
problems, a symmetric distribution does not substantially increase the error

probability.

Proof. Suppose we are given the optimal values of o, and 8, and we wish
to find the optimal values of «, and 8, . Since &, and B, determine Py(e | H,),
our problem is to minimize Py(e | H;). Without loss of generality, assume
that d(1) = H,, d(2) = H, . Using the Markov dependence, we see that

Pyle| Hy) = ps'(N) (41a)
=p! (V=D = B) + [1 — (N — 1]y (41b)
= o+ p' (V= 1)1 — o — By), (41¢c)

where pA(N) = Pr(Ty = 7| H). If we were allowed to choose o, and B,
differently at each time (which we are not), then (41b) implies that to minimize
Py(e| Hy), the last value of 8, should be the maximum possible, and the last
value of o, should be the minimum possible.

If the sum of o, and B, is at most one, then (1 — o, — ;) = 0, and from
(41c), minimizing Py(e | Hy) is then equivalent to minimizing p,}(N — 1).
However, this is Py_,(e | Hy), and proceeding a step at a time, we conclude
that even if we were allowed to choose different (o , B,) pairs at each stage,
the best strategy would be to always choose the maximum possible value of 8,
and the minimum possible value of &, . Since the minimum probability of
error at time N is no higher for the problem which allows a variable choice of
(2 , By), we conclude that the above strategy is also best for the original
problem,

Note that if o + B, << 1, then the values of o, and B, which result in the
first step also will sum to less than one. This can be seen from Section 4.
A similar argument can be made with the values of oy and B, fixed, and «,
and B, being variable, completing the proof.

Using this line of reasoning also allows us to prove the following theorem,
which will be useful in the next section.

THurOREM 6. If v = o0, then there exists an integer Ny, such that for
N = N, , the optimal transition rule satisfies ay* 4+ B,* < 1 and is therefore
a likelihood ratio rule.
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Proof. From (8) and (5), we have y = o0 = P¥2, 0) =0 =
limy_, P*(2, N) = 0. We shall consider the case Pr{l{(.X) = 0 or oo} = 0.
The cases Pr{l(X) = 0} > 0, Pr{{(X) = oo} > 0, follow in a similar fashion.

Suppose op* + Bo* > 1. Then, from the arguments of the preceding
theorem, oy * + B,* > 1, and from (41c),

Pyle | Hy) = og* + (1 — o™ — %)
= 1—B,*. (42

But, if P*(2, N)— 0, then 5;*(IN) — 1, and therefore By*(IN) — 1. Using a
similar argument involving Py(e | H,), we conclude that ay*(IV), g *(N) — 1
also. Therefore, for any € > 0 and N large enough,

¥ q* By B =1 —e (43)

Then, if Ty = 1 (similar reasoning applies if Tj = 2),

P*(e) = j“‘o*—:(_)BF[Bo* + (1 — o™ — By*)V]
Ty ¥ - _
+W [1— (1 —o*—B*]
—7129— (1 —¢) if N even
(-9 if Nodd
> } min{m, , m} — € » 0. (44)

Q.E.D.

Another line of reasoning is also possible and yields the most general
theorem we have been able to establish on the structure of optimal two-state
time-invariant algorithms; namely, that the state transition function must be
on the boundary of its allowable region. This almost implies that the optimal
rule is likelihood ratio. First, we establish a lemma concerning the gradient
of Py(e), considered as a function of o, By, o , and B, .

LemMva 4. (1) If N is odd and Ty =1, then 9P\ (e)[0oy < 0 and
0Py(e)/0oy = 0.

(2) If N is odd and Ty, = 2, then 0Py(e)|éB, = 0 and oP\(e)/eB, < 0.
(3) If Niseven and Ty = 1, then 6P\(e)[¢8, = 0 and 0Py(e){¢f,; < 0.
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(4) If N is even and Ty = 2, then dPy(e){0a, < 0 and 8Py(e)/0x; = 0.

(5) If 0 < ag,0q, By, By < 1, then the weak inequalities in (1) to (4)
above can be replaced by strict inequalities.

Proof. Taking (40a) and interchanging my and 7, , &, and B, , and «; and
By, gives (40b). Therefore, we need only prove (1), (3), and (5) above.
Considering (1) first, we find from (40a) that

OPy(e)[0ay = (—mol8*{Bo[l — (1 — 8)¥] + N1 — 8)"1}, T, = |
(45)

where for ease of notation, we have defined §; = o + B, . Since 0 < §, < 2,
the first term is clearly nonnegative, and unless 8, = 0, it is positive. Because
N — 1 is even, the second term is nonnegative, and it is positive unless
og = 0 or 8§, = 1. We have thus established the first part of (1) above. We
have also established (5) for this case since both terms in (45) are zero if and
only if B = 0and ¢y = O or I.

Similarly, from (40a),

0Py(e)[0ay = (m[3)}{Ball — (1 — SYN] + Naydy(l — )%, Tp =1
(46)

where 8, = oy + f3; . Reasoning in a similar manner, we find both terms to be
nonnegative and the sum to be positive unless 8; = 0 and o, = 0 or 1. This
completes the proof of (1) [and by analogy, the proof of (2)] and the portions
of (5) relating thereto.

Proceeding to the proof of (3), we first differentiate (40a) to obtain

0Py(e)[eBy = (—meapf3HI(1 — 8)* (1 + (N — 1) &) — 1], T,=1
(47)
and

OPy(e)/op, = ('”10‘1/312)[(1 — VL + (N —1)§) — 1], To=1.
(48)

To show that 6Py(e){¢B, = O for N even, it suffices to show that
Sua(B) = (I — )Y M1 + (N —1)§,) — 1 49)
is nonpositive for N — 1 odd and 0 < 8, < 2. Similarly, this would show that

fya@) =1 =8)" 1+ N —-18) —1 (30)
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in (48) is nonpositive for N even and 0 < §; < 2, thereby establishing
oPy(e)]oB; < 0. We find that

Sfua(0) =0 (51)
and
dfya(v)fdx = —N(N — 1) x(1 — x)V-2, (52)
which imply
Jaa(x) <0 for 0 <<x<2and N even. (53)

Furthermore, we see that (47) can equal zero only if oy = 0 or fy_,(§,) = 0,
which would imply &y = B, == 0. Similarly, (48) can equal zero only if &, = 0.
It is now possible to cstablish the following theorem.

THeoREM 7. For all N, the optimal two-state time-invariant rule is either
likelihood ratio [i.e., (og*, 0y *) 1s on the lower boundary of Fig. | and (B,*, Bi*)
is on the upper boundary]; or both (ay*, o, *) and (By*, B,*) are on the lower
boundary; or both (ay*, o, *) and (8,*, By*) are on the upper boundary.

Remark. Clearly, only the first of these conditions makes intuitive sense.
Still, one must show the other two conditions preclude optimality. This is an
open problem. This theorem shows that optimal transition rules lies on the
boundary of the convex set of allowed transition rules.

Proof. Tirst, consider N odd. If the optimal initial state is T,* = 1,
we fix B, and B, and optimize over o and &, . The region of allowable (&, , o)
pairs is as shown in Fig. 1. From part (1) of Lemma 4, we find that Py(e)
is minimized by (., ;) along the lower boundary of Fig. 1. From (22),
we see that this implies p ,(x) corresponds to a likelihood ratio rule.

Now considering p, (%), or equivalently, (8,,8,), we will show that
(B,*, By*) cannot lie in the interior of the region shown in Fig. 1. If (8,*, B;*)
were in the interior, then necessarily

oPn(e)  0Pn(e)

R ] 54
From (47), (48), and (49), we find
aP)\'(e)/aﬂo = (“7700‘0/802)]‘1\7—1(80)» T, =1 (55)

oPy(e)[opy = (m4/6:%) fy—1(8)), Ty =1 (56)
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Since «y* > 0 and oy * > 0, (54) would imply
Fr-1(8*) = fn-a(8,*) = 0. (57)
From (50), (51), and (52), we see that when N is odd, fy_;(x) is

(1) negative and decreasing for 0 < x < 1,
(2) increasing for x > 1, and

B) Sfya(2) =2(n - 1)

This function therefore has a unique positive root between x = | and x = 2.
Equation (57) would then imply §,* = §,*. However,

2P y(e) _ SN (N — 1)(1 — §)V

T, =1 (58)

3302 a 802(1 - 80)2 '
*Py(e) _ —ma 8 NIV — 1) (1 — §)V .
B 51— 5 b=t )

so that these second partials would differ in sign at 8,* = &,*, an impos-
sibility for a local minimum. Thus, (8,*, B,*) must lie on the boundary of its
allowable region when N is odd and T* = 1.

When N is odd and T,* = 2, we repeat the above argument, merely
interchanging the roles of « and B and of H, and H;. We then find that
(Bo*, By*) must lie on the upper boundary, which is consistent with the
optimal rule being likelihood ratio, and (og*, % *) must lie on either the
lower or the upper boundary. This completes the proof for N odd.

We now turn to the proof when N is even. First, if Ty* = 1, we find from
Lemma 4, part 3, that 9Py(e)/cB, > 0 and éPy(e)/0B, < 0, which imply that
(By*, B,*) must lie on the upper boundary.

If (g *, a; *) were to lie in the interior of its allowable region, we would have

0Py (e)[0cg = OPn(€)[00q = O [(ayr.ay0.60%.8,%) -

This can be shown to imply that 82Py(e)/0x,® and 92Py(e)/éa,? differ in sign
at (o, oy %, Bo*, B1*), a clear contradiction. We therefore know that for N
even and 7% = 1, (¥, oy *) must lie on the boundary of its allowable

region.
Similarly, if Vis even and Ty* = 2, we find that («y*, ; *) must lie on the
lower boundary, and (B,*, B,*) on the boundary of their allowable regions.
Q.E.D.

Freedman (1971) has also considered the problem of finding the structure
of the optimal two-state rule. He symmetrizes the problem in that T, the
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initial state of memory, is chosen at random with both values being equally
likely. Also, since P*(2, N) <} for his problem of interest [testing
H(+1, 1) vs #(—1, 1)], he assumes that P*(2, N) < }. Under these
assumptions, he shows that the optimal rule must be likelihood ratio. The
proofs are somewhat involved, and thus, we will only give the reasoning
which leads to the final result. The interested reader is referred to Freedman
(1971) for details. The three lemmas and theorem that follow all assume
symmetry in T and that P*(2, N} < }.

LeEMMA 5.

% B* >1  and  ¥p* <L (60)

LemmA 6. The optimal rule must have disjoint transition regions. More
precisely,

. X causes transitions from state 1 1o) 0 61
state 2 and from state 2 to state | | (1)
Levmma 7. Considering Py(e) as a function of o , By , Bolotg , and oy [B, , the

optimal rule has OPy(e)|e(Bolay) > 0, OPy(€)/0(xy/By) = 0, dPy(e)/dxy < O,

and 9P (e)]0B, < 0.

TraeoREM 8. The optimal rule is likelihood ratio.

In summary, we see that under certain mild assumptions or in special cases,
we can show the optimal two-state time-invariant rule is likelihood ratio.
This, together with the result that optimal time-varying m-state rules are
likelihood ratio, lends credence to the assumption that even without restric-
tions, the optimal time-invariant rule is likelihood ratio.

7. A GAUsSIAN PROBLEM

Let us consider the special case where the two probability measures &,
and 2, are both Gaussian with variance one, but &, has mean +1 and 2,
has mean —1. Then, /(x) = exp(2¥) so that Ingx = 0, Imin = 0, y = c0,
and P*(2, ©0) = 0. Theorem 6 of the preceding section ensures that for N
large enough, the optimal two-state time-invariant rule is a likelihood ratio
rule. For N = 1, the optimal rule is also a likelihood ratio rule and corre-
sponds to the Bayes decision rule.
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For equal @ priori probabilities and a symmetric random choice of initial
state, Freeman (1971) has shown that the optimal rule is not only likelihood
ratio, but also symmetric (i.e., ay* = B,*, ay* = ,*). This implies

(x: pral) = 1} ={w: 2 > M}
and (62)
{x:pu(x) = 1} = {x: 2 < —M}

for some 0 << M < co. This greatly reduces the problem of searching for
the optimal two-state algorithm since Py(e | Hy) = Pyl(e | H;), and we need
only minimize over 0 < M < o0.

As previously noted, a deterministic initial state is optimal, and it is
therefore possible that Py(e) is increased by taking a symmetric initial
distribution on T, . However, the increased symmetry makes the problem
tractable, and for reasons to be developed later, the increase in Py(e) should
be minimal. Therefore, let us find P,*(2, N), the minimum error probability
achievable by a two-state time-invariant rule after N observations when the
initial distribution is symmetric.

Since Py(e | Hy) = Py(e | H;), these values will be denoted by Py (M)
Py(M) = p3(N) = u(N)

r 11—7»

=157 TaTe, 0o ar 0 (63)
where
& 0 A’I
g=oy=p =0(M—1) ,=?=%ZSEM4:B (64)
and

Q) = W Jm exp[—x2/2] dx.

<3

The following bounds will be useful:

. — VM — 1) ex —1)2
[1- 01 = 1)2] < [y — 1) exp(H(M — 1)?)]g < 1 M >(615)
1 M+ 1 -1
[ =l <l eXP(ZM)]r<(1—m) M>(626)

r < exp(—2M). (67)
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Bounds (65) and (66) are taken directly from Wozencraft and Jacobs (1965),
while (67) holds because

_d wrdx exp[—(x + 1)%2]
[ dx exp[—(x — 172]

I w d exp[—(x — 1)%2] exp[—2x] _
¥ dx exp[—(x — 1)3/2]

< exp(—2M). (68)

To establish an upper bound on P.*(2, N), from (63) and (67), we obtain
Py(M) <r -+ 31 — q)¥ < exp(—2M) 4 % exp(—Ng). (69)

Now, (65) gives us
.= (_2”)1/%% exp[—3(M — 1)1, (70)

where § < (M) < 1 for M > 3. Let
M, A Q2InNY241—e  where I<e<l. an
Then, setting K = (2 In N)!/2, (69), (70), and (71) yield for M, > 3

P2, N) < Py(M,) < exp[—2(K 41 — ¢)]

3

+ ] 5 €Xp [W—) exp (eK — i;—)] (72)

Now, for a fixed ¢, as K grows large, the ratio of the second term to the
first term in (72) tends to zero. Thus, for any € > 0 which leaves M, >3,
there exists an NN, such that if N > N, then

P2, N) < (1 + ¢)exp —2(2In N)U2 + 1 — ¢) (73)

[i.e., the ratio of the second term to the first term in (72) is less than e].
To obtain a lower bound to P *(2, N), we write

Py(M) = A(M) + B(M), (74)

where

AM) =, Bl = + Z [l — g+ DIV (75)
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Since, as can be easily verified, dr/dM, dgldM < 0, A(M) is decreasing in M,
and B(M) is increasing in M. Therefore, we have

Lemma 8. For any M > 0, P,*(2, N) > min{A(M), B(M)}.
For large N, B(M) is almost discontinuous at
M, = (2Iln N2 + 1. (76)

This is because the maximum of N independent .#7(0, 1) random variables
converges to (2 In N)'/2 in probability. 4(M), on the other hand, is relatively
well behaved, varying like exp(—2M) for large M. This behavior is indicated
in Fig. 4. It is seen that the minimum of Py(M) = A(M) 4 B(M) occurs

o5k BIM)

025

A(M)

i
% Mo

M
Fic. 4. Steady-state and transient terms.

slightly to the left of M, and is essentially exp(—2M,). This explains why
the upper bound (73), taken by choosing M = M, — ¢, will be tight as
N — oo and € — 0.

LemMA 9. For N = 2, A(M,) < B(M,).
Proof. From (67) and (73),

AM) = r[(1 + 1) <r < exp(—2M,). an
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For N > 1, we have A7, > 1 and r < 0.05. Thus, for N > 1,

B(M,) =% : : : [I —q( =+ 1)]¥ = 0.45(1 — 1.05¢)V.
From (65),
9(M,) < exp[—(M, — 1)*2] = /N
)
B(M,) = 045(1 — 1.05/N)V.
Now,

(1 — 0) > exp(—20) for 0 <8 <0.79.
Thus, for N > 2,
B(M,) = 045 exp(—2.1) = 0.055.
Therefore, A(M,) < B(M,), as long as N > 2 and

exp(—2M,) < 0.055.

Since My = (2 In N)¥2 4 1, we see that (70) is satisfied for N > 2.

From Lemmas 8 and 9, we conclude

r(M,)

PN > Threny

N =2

To put the lower bound in its final form, we use

M — )2
r> () a2 M=l

This inequality follows from (53) and the fact that for M > I,

(%1 i)(l - (M-l|— 1)2) > (%J—r })2

Finally, using (84), (85), and (76), we have for N > 2

(2In N)/(2 4+ (2 In N)1/2)?
I 4 exp(—2((2 In N}/ 4 1))

P*(2,N) >

(78)

(79)
(30)

(81)

(82)

(83)
Q.E.D.

(84)

(85)

(86)

exp(—2((2 In NY2 ++ 1)), (87)

Note that as N — 00, the ratio of the upper and lower bounds, (73) and (87),

tends to one.
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It 1s possible to extend the above reasoning and to obtain thereby:

TuroreMm 9. If, under H, the distribution on X is A (u,, o®), while under 1,
it 15 N (ug,0%); and, if the hypotheses arve equally likely, then, letting
p=lp—ml

lim P42, N)
N exp[— (o )(@ In NJ + pfa)]

A program was written to find numerical values of P,*(2, N) for various
values of N in the range | <{ N < 10%% Figure 5 shows a plot of P,*(2, N)

=1 (88)

Fic. 5. Comparison of P.*(2, N), P}(2, N), and P*(o0, N) for I < N < 50.

and also of P*(co, N) for 1 X N < 50. Although both have asymptotic
value zero, a marked difference in rate of approach is evident. Table I further
contrasts this difference by showing the number of observations required
by both two-state and infinite-state memories to achieve certain error
probabilities.

Figure 5 also shows the minimum error probability achievable by a
two-state time-varying rule. This curve is strictly below the time-invariant
curve, as it must be. However, for a large number of observations (N a~ 50)
the ordinates differ by less than a factor of 2. Although not shown in this
figure, approximately the same ratio holds at N = 1000. This behavior is
due to the fact that the time-varying rule has time-varying thresholds
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TABLE I

Desired error

probability 102 10-2 10— 105 105
Number of 33 ~660 ~24,000 ~6.3 X 10° ~6.3 x 10%
observations
required by two-
state memory
Number of 6 10 14 19 69

observations
required by
c0-state memory

{M ) _, . Initially, these thresholds are small (e.g., M; = 0.0, M, = 0.834),
but they increase with n. Some thought shows that M, * must increase like
(2 In #)!/2 + 1. If it increases any more quickly, very few transitions occur,
while if it increases any more slowly, time-varying rules would be inferior
to time-variant rules, an impossibility. The slow rate of increase of (2 In n)t/2
ensures that for a fraction of time tending to one, M, * is essentially the same
as My*. Since the transient term B(M) is negligible at M = My*, the
superior “initial distribution” achieved by the time-varying rule during its
early stages is of negligible value.

Similarly, because of the negligible value of the transient term, we con-
jecture that P*(2, N) and P *(2, N) are asymptotically equal. Figure 6 plots
the ratio P,*(2, N)/P*(2, N)for 1 < N < 1000 and supports the conjecture.

T T

o -

o .
1 !

ol [[5) 100 1000

N

Fic. 6. Plot of P.*(2, N)/P*(2, N) for | < N < 1000.

Figure 7 compares P*(2, N) with its asymptotic form exp[-2((2In N)/241)].
It is seen that for (21n N/ 1 > 7, P*(2, N) is within a factor of 3 of its
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/einN+1

2 4 6 8101214 16 18
T T T 7

T

T

¥

0%+

I exp-2(,/22nN+1)

105

Fi1c. 7. Plot of P,*(2, N) and its asymptote.

asymptote. However, this corresponds to N > ¢'® ~ 108. Thus, for small
values of N, the asymptotic expression gives only a general idea as to behavior.

8. ConJECTURED BEHAVIOR OF P*(m, N)
For the hypothesis test #, = A(1, 1) vs &, = A(—1, 1), we conjecture
that for all m < oo,

- P*(m, N) _
Noo “exp[—2(m — 1)((2 In NY2 + 1)]

1. (89)

Our reasoning is based on the assumption that the optimal rule is likelihood
ratio for all m and N. If a transition is made from state 7 to state ¢ + 1 when
X = x, and from state 4+ | to state i + 2 when X = x, , one would expect
that when X = x; = x, 4+ «x,, a transition would occur from state 7 to state
i + 2, since the information gained (the likelihood ratio) is the same for
observing x, , x, successively as for observing x; by itself. Thus, the optimal
m-state rule will have multistate transitions. If the minimum value of X
causing a transition between adjacent states is x; , then the minimum value
to cause double level transitions should be approximately 2x, ; the minimum
value to cause triple-level transitions should be approximately 3x, ; etc.
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If x, is chosen close to (2 In N)'/2, then for large N, multilevel transitions
occur with negligible probability. If x, is chosen to be less than 0.5 (2 In N)1/2,
then multilevel transitions cannot be neglected. However, the maximum
information (log likelihood ratio), which can be accumulated in favor of
either hvpothesis, is now less than onc-half of what it would be if
% ~ (2In N)/2 And, since, for the two-state machine, choosing
xy & (21n N)Y? causes the transient term to be unimportant (ie., the
machine is essentially in steady state), we belicve the same behavior will apply
to m-state machines. This has to do with the fact that for any ¢ > 0, the
expected number of observations which exceed (2In N2 + E(X) + ¢
tends to zero, and yet, the expected number of obscrvations which exceed
(2In N2 L E(X) — € tends to infinity.

Therefore, the optimal choice of ¥, will be slightly less than (2 In N)1/2 4 1
(i-e., approximately the same as 3 *). Any larger value causes the machine
never to change state, with probability close to one. Any smaller value causes
the machine to be in essentially its steady-state mode, but since the steady-
state error rate is decreasing in x, , we want x, to be as large as possible.

Choosing %, = 2In N1 4 1 — ¢y allows us to ncglect multilevel
transitions. Adding the “8-traps’ [see Eq.(9a) and Hellman and Cover (1970)],
the resultant Markov chain is solved easily for its steady-state occu-
pation probabilities, and the associated error rate is found to be
exp{—2(m — D[(2In N2 4+ 1 — ey]}. By letting ey —>0 as N — oo,
we obtain (89).

The above reasoning shows why Lynn and Boorstyn (1972) found that
multilevel transitions were of little use in lowering the error rate, even for
moderate values of N. By noting that deletion of the §-traps causes the error
rate to behave approximately as exp{—m[(2 In N)}}/2 4 1]}, we see why they
found that adding 3-traps was quite effective in lowering the error rate.
Actually, as noted, Lynn and Boorstyn did not use randomized §-traps, but
achieved the same effect by using higher thresholds for transitions out of
states 1 and m.

When N is large, the trade-off between memory size and sample size is in
favor of increased memory. Using the asymptotic formulas we find that, for
testing between A°(4-1, 1) and A"(—1, 1), approximately 107 or 108 samples
are needed to obtain Py(e) = 10-% when m = 2. By adding one state to
memory, we obtain m = 3 and find that only 20 samples are needed. This
latter result must be interpreted carefully, since, even with no memory
limitation, an error rate of 3.4 X 10-¢ is all that is achievable with N = 20.
Clearly, the asymptotic formula is not applicable for this choice of m and N.
However, this example points out an interesting fact: For small N, the
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asymptotic expression for P*(m, N) is below the true curve for P*(co, N).
By plotting the two (for fixed i), we can obtain an idea as to where the
asymptotic formula is and is not applicable. '

9. SUMMARY

The structure of the e-optimal infinite-sample finite-memory rule is known
from previous work for both the time-varying and time-invariant problems.
This paper establishes the existence of optimal finite-memory rules for the
finite sample problem. It further conjectures, and partially supports, that the
optimal time-invariant rule is likelihood ratio. On the other hand, it is
completely established that the structure of optimal time-varying rules is
deterministic and likelihood ratio. Optimal time-varying and time-invariant
rules share a deterministic initial state and decision function.
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