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Refractive Fabry-Perot Bistability with Linear
Absorption: Theory of Operation and Cavity
Optimization

DAVID A. B. MILLER

Abstract—We present a theory of optical bistability for a Fabry-Perot
cavity containing a medium with nonlinear refraction but linear ab-
sorption with only plane-wave and slowly varying envelope approxima-
tions. An analytic expression for the critical intensity I, for the onset
of bistability is derived and used to compare cavity designs. It is shown
that 1) the important material parameter for minimum /; is the ratio
nyla, 2) the limit to I, is set by limitations on finesse due to in-
homogeneities rather than the absorption itself, and 3) the cavity de-
sign which gives lowest /. for a given finesse is that for which the mirror
transmissivity equals the absorption per pass; at high finesse this design
leads to a total peak cavity transmission of 7 when mirror reflectivities
are equal.

I. INTRODUCTION

N experimental observations of optical bistability in in-

trinsic nonlinear Fabry-Perot interferometers [1]-[7], the
effect of nonlinear refraction [1]-[7] usually dominates over
nonlinear absorption [7] in giving rise to the bistability itself.
This was realized in the first observations of optical bistability
by Gibbs et al. [1] who proposed simple theoretical descrip-
tions for each extreme case (i.e., absorption only and refrac-
tion only) applicable to an atomic system as the nonlinear
medium. A theory of optical bistability involving only non-
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linear refraction was also proposed by Marburger and Felber
[8]. Following the theoretical work of Bonifacio and Lugiato
[9], much theoretical activity has centered on absorptive and
refractive (dispersive) bistability with a two-level system as the
nonlinear medium [10], although it is difficult to generalize
this theory to the more complicated quantum mechanical sys-
tems which may be encountered in practice where only phe-
nomenological parameters describing the linear and nonlinear
behavior of the system may be available [11]. One such sys-
tem is the semiconductor InSb where nonlinear refraction is
observed in the presence of significant but substantially linear
absorption [12] through bandgap-resonant saturation [13].
This is not a special case, but is an example of a general limit-
ing condition to be expected for many different types of
saturable systems when not driven too close to resonance. For
example, even in a simple two-level saturable system, linear
absorption is always present off-resonance (falling off as
~1/Aw?* where Aw is the distance from line center) which, by
partially saturating the system, affects the refractive index at
the off-resonant frequency, giving a first-order nonlinear re-
fractive index falling off as ~1/Aw?; the resultant change in
absorption is, however, concentrated more at frequencies near
to the line center (the first-order nonlinear absorption falls off
as ~1/Aw*) and it is easily shown rigorously that the limiting
off-resonant condition is nonlinear refraction with linear ab-
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sorption. Furthermore, since comparatively large changes in
absorption are required to give rise to absorptive bistability,
while only very small changes in refractive index are needed
for switching because of the interferometric nature of Fabry-
Perot cavities, even quite large relative changes in absorption
will have relatively little effect on a bistable Fabry-Perot
cavity operating primarily by nonlinear refraction. These
arguments suggest an analysis of nonlinear Fabry-Perot action
for a medium with linear absorption and nonlinear refraction,
and this analysis is the first purpose of this paper.

The need for including linear absorption becomes particu-
larly apparent, however, in any attempt to optimize cavity de-
sign to obtain, say, a low switching intensity for a given ma-
terial.  Taking the nonabsorptive plane-wave theory of
refractive bistability [8] to its logical extreme leads to the
absurd conclusion that bistability can be observed at arbitrarily
low intensities simply by increasing the length of the nonlinear
material in the cavity ad infinitum. This cannot be valid in
practice because absorption (which is unavoidable in any sys-
tem relying on a saturation effect) must eventually quench out
the multiple beam interference which is essential to the Fabry-
Perot action and without which, in turn, there can be no bi-
stability in this type of system.

In this paper the equations describing nonlinear Fabry-Perot
action for uniform plane waves for an active material with
first-order nonlinear refraction and linear absorption are for-
mally derived in Section II. The analysis and results are similar
to those of Marburger and Felber {8], giving two equations for
the Fabry-Perot transmission T which, when solved simul-
taneously, give T in terms of the incident intensity /,: the ab-
sorption is, however, fully included in these equations and no
“mean-field” approximation [8], [14] is made; we also allow
for unequal cavity mirror reflectivities. To give a criterion to
compare different cavity designs, we derive an explicit ex-
pression for the critical intensity for the onset of bistability
I, in Section III, and define “figures of merit” both for the
material (f) and the cavity design (u), larger “figures of merit”
giving proportionately lower I,. In Section IV, the optimiza-
tion of equal-reflectivity cavities is discussed in detail. Even
with equal reflectivities, u is a function of two parameters
(e.g., mirror reflectivity and material absorption) and there is
no single optimum design; neither is there a unique way of do-
ing the optimization. Because, in practice, cavity finesse is
limited by imperfections, we argue for an optimization giving
minimum [, for a given finesse F and present analytic and
numerical results for the resulting cavity design and per-
formance. In Section V, the important relations are given in
their simplified forms for high finesse and the validity of the
high-finesse approximation is discussed. The conclusions for
cavity design and material selection are summarized in Section
VI and an illustrative calculation of I, is given for the case
of InSb.

II. NONEINEAR FABRY-PEROT ACTION WITH LINEAR
ABSORPTION AND NONLINEAR REFRACTION
This analysis is similar to that of Marburger and Felber [8],
except for the addition of linear absorption, and so we outline
it only briefly. The general conclusion is that linear absorp-
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tion makes little difference in the form of the equations which
describe the nonlinear Fabry-Perot transmission, except that
the ranges of transmission and reflection are appropriately re-
duced and absorption must be properly accounted for in the
definition of finesse.

Using the normal wave equation for nonlinear optics for a
nonmagnetic insulating medium, and considering only plane-
wave solutions propagating in the + and - z directions in a
plane-parallel cavity, we obtain in the steady state for the
electric field & (where the e’ time dependence has been
removed)

928 47’
aZ—2+k28=<ikoz— o

n1& > > & ¢y
where «a is the intensity absorption coefficient, k is the propa-
gation constant, w is the angular frequency, and c is the ve-
locity of light. The nonlinear polarization (with the e**’? vari-
ation again removed) is  =n|& [*& where we assume an
isotropic medium and 7 is a real constant describing nonlinear
refraction.

Defining real forward and backward amplitude (& and
&p) and phase (¢ and ¢g) envelope functions through

&= &Feid)Fe—-ikz + &B eiqueikz
and taking the slowly varying envelope approximation and

averaging over some spatial periods leads, on equating real and
imaginary parts, to the four equations

%=M[g%+2g%] 2
0z HoC
W2 (g5 + 26} )

We solve these equations taking the usual boundary conditions
for a Fabry-Perot resonator. Solving from (2) and (3) for the
roundtrip nonlinear phase change ¢ - ¢ enables an effective
mean internal intensity /.¢¢ to be defined through

6mwn
¢p - Or = 2vlesr =
npcC

D
f [83(2) +&F(D dz  (6)

where D is the length of the cavity and y = 247 wnD/n3c>.

Defining new parameters A =1 - e"*P (4 is the intensity
absorption per pass), Rr (Rp) is the intensity reflectivity of
the front (back) mirror, R, = (1 - A)v/RgRpg (R, is the effec-
tive mean reflectivity), Rg, = (1 - A) Rp (Rp,, is the effective
reflectivity of the back mirror), F =4R,/(1 - Ry)?, and solv-
ing (4) and (5), now gives the total Fabry-Perot fractional
(intensity) transmission T

_(1-Rp)(U-Rp)(1-4) 1

T
(1-Ry)? 1 + Fsin? (ylo¢1 - §)

Q)

and fractional (intensity) reflection S
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_ (RetRpg(1-4)-2Ry) 1
(1 - Ry)* +Fsin® (yleps - 8) 1+ Fsin? (yl¢r — 8)
®)
where I.¢¢ can now be explicitly written as
A (I1-Rp)(1+R 1
[eff=10—‘( E 8). €)

oD (1 - Ry)? 1+ Fsin® (ylegs - 8)

(I, is the incident intensity).
Combining (7) and (9) gives the second equation, parametric
in Jo¢¢, for the Fabry-Perot transmission T'

_oD (1-Rp)(1-A4) Leet

A (+Rpa)  Io (10)

Equations (7) and (10), solved simultaneously to eliminate
I¢s, describe the nonlinear Fabry-Perot action with linear ab-
sorption in a fashion analogous to Marburger and Felber’s [8]
equations (31) and (24), and the behavior of the nonlinear
cavity can be similarly visualized by graphic solution of N
and (10). Now, in calculating the finesse F = (n/2)}V/F =
7v/Ra/(1 - Ry), it is the effective mean-mirror reflectivity,
including the effects of bulk absorption, which must be used.

II. CriTICAL INTENSITY AND DETUNING FOR THE
ONSET OF BISTABILITY

The two relations between T and Ylo¢¢, (7) and (10), repre-
sent the usual periodic Airy function and a straight line
through the origin, respectively (see Fig. 1). The graphic cri-
terion which determines whether a bistable region exists at a
given incident intensity is whether the straight line makes a
single or a multiple intersection with the periodic function,
only multiple intersections giving bistability [8]. The condi-
tion for the existence of bistability, given suitable cavity mis-
tuning, is that the slope of the straight line be less than the
maximum slope of the periodic function. Since a shallower
slope on the straight line corresponds to a greater incident in-
tensity, this gives a condition to describe the minimum
incident intensity below which bistability cannot be observed,
regardless of cavity mistuning, i.e., the critical intensity for the
onset of bistability 7.; the critical mistuning 8. is that for
which the critical straight line meets the curve at the point of
equal gradient (see Fig. 1). To obtain actual bistability, it is
necessary only to increase I, slightly above I, and & slightly
above &,.

We can now solve formally for /, and §,. The maximum
gradient of the periodic function is, from differentiation of (7),

<6T> _16y (1-Rp)(1-Rp)(1-4) H(EF)
Mest) o V2 (1- R (GF)?

(1n

where

HF) = [(F + ) VEFIP F8F - (F+ 2 - 27212

and
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Fig. 1. Diagram illustrating that (a) forJ </, the straight line only ever
makes one intersection with the curve; (b) the critical condition

Io =1, 5 = &¢; (c) bistability (multiple intersection of line and curve)
forlog > I, 6 > 6.

G(F)=3(F+2)- /(F+2) +8F2.

This maximum gradient occurs when

1
sin? (Ylogs— 8) = 1—15(3F+ 2-(F+2)+8F?).

Equating (87/8/c¢f)max to the gradient of the “straight line”
[from (10)] gives the expression for /.:

LYV (-R) (G
¢ T6mB A(1 +Rge)(1-Rp) H(F)

where = y/maD.

Substituting the value at maximum gradient of sin? (Ylees - 8)
from (12) and I, for I, in (9) gives the critical effective in-
ternal intensity Jegs ¢
VI 6w
Yieff ¢ 4 H(F)
and, hence, from (12) we deduce the critical value &, of the
cavity mistuning §:

5 V2 G

1
. _l _ —_ +2
"4 HE) M [{4F(3F

“V(F+2)* +8F? }1/2] .

(12)

(13)

(14)

(15)

The sine itself is always negative at the point of maximum
positive slope on the periodic function, and thus the negative
square root is taken in the sin ! term. §, depends only on the
parameter F, or, alternatively, on the cavity finesse ¥ = 7+/Ra/
(1- R,)=n/2+/F, and this dependence is shown in Fig. 2.
(8, > m implies that bistability cannot be obtained in the first
nonlinear order of the cavity.)

In expression (13) for I, all the relevant material properties
are contained in one parameter § which can conveniently be
rewritten as B =3n,/Aa where n, is defined through n =
ne +n,I. Within the limitations of this plane-wave model, § is
the single “figure of merit” for the material, higher § giving
lower I, (for given A, R4, and Rg). B can be interpreted as
the limiting roundtrip nonlinear phase shift (in wavelengths)
per unit intensity as the absorbing nonlinear material is made



MILLER: REFRACTIVE FABRY-PEROT BISTABILITY WITH LINEAR ABSORPTION

~— EXACT CALCULATION

\ --- HIGH FINESSE

AN APPROXIMATION

CRITICAL DETUNING &/ T
A ;

1 10 100

FINESSE . #

Fig. 2. Critical detuning of the cavity for the onset of bistability as a
function of the cavity finesse.

arbitrarily long (intensity is defined as the forward intensity
just inside the front mirror).

All the other terms in (13) can be grouped conveniently into
a cavity figure of merit g which is a function of the three inde-
pendent cavity parameters Rp, Rp, and A. Of course, any
three independent functions of Rp, Rg, and A can also be
used as cavity parameters. We choose, for the moment, R, (or
F), Rgo, and 4. This also enables us to split ¢ into two com-
ponents, one of which is a function of only two parameters;
this will make the comparison of cavity designs more straight-
forward. Thus, we have

11
I.= B u (16)
where
#(ROL;RBO(’A) =p(RO£aRBOUA)“0(RO£>A) (17)
o )+ 197 AL R0 0D
_HE)

G2 (%)

5 (Ros Ripas A) _(L+Rpa) (1 - Ri/Rpa (1 - A)). (19)

(1+Ry) (1-Ro/(1-A4))

In this description, po is the cavity figure of merit for equal
mirror reflectivities, and the factor p describes how the overall
cavity figure of merit u is influenced by altering the relative
reflectivities of the two mirrors for a given Ry, and A (for
Rg=Rp,p=1).

The maximum possible value of p occurs (for given R, and
A) when Rp, is a maximum. The largest value of Rp, is
when the back mirror reflectivity (Rg) is 100 percent, and
then Rg, =1- A. Therefore,

A -R,/(1-4))
1+R, )

Pmax =2 (20)
In practice, the second term on the right-hand side of (20),
although always positive (so that pp,, < 2), is usually small
(for Ry 2 0.5, pmax = 1.8 for all 4). Therefore, the effect of
altering the relative reflectivities of the mirrors can give a re-

309
o
O REFLECTIVITY R
098
o
Ed
096
—
x ol
i
= 092
w
€]
w o f
R
15} 084
[re
068 /036
FEwa R 1

0-01 01 1
ABSORPTION PER PASS A

Fig. 3. Cavity figure of merit ug (equal mirror reflectivities) as a func-
tion of mirror reflectivity R and absorption per pass A.

duction in /,, for any given R, and A of up to a factor of $2.
This is done of course at the expense of cavity transmission,
which, in the extreme case (Rg = 100 percent), is zero. Note
that this mode of operation (Rg = 100 percent) is only possi-
ble in the presence of absorption; otherwise the cavity re-
flectivity is always 100 percent [see (8)].

This enables us, in practice, to remove the factor p from
further consideration in determining u and removes one
variable (Rg) from any optimization analysis; we now study
the function pg, the figure of merit for cavities with equal
front and back mirror reflectivities.

IV. OpTiMIZATION OF CAVITY FIGURE OF MERIT p,

The general behavior of o as a function of the (equal)
mirror reflectivities R and the absorption per pass A4 is shown
in Fig. 3. The first property of o to note is that there is no
single optimum cavity: by going to higher R we can always
choose some A to obtain a higher p,; similarly, by going to
lower A we can always choose some R to obtain a higher u,.
These two optimization methods are, however, arbitrary and
lead to different cavity designs. Also, while 4 and R are the
final parameters used for manufacturing the cavity, they do
not convey any obvious information about the behavior
of the cavity. It is more meaningful to choose the two pa-
rameters Tmax, the maximum cavity transmission (Tpax =
(1-R)? (- A)(-R(1-A)*)and F, the cavity finesse;
these two parameters are mathematically independent func-
tions of 4 and R and provide an adequate mathematical basis
for describing cavity performances; furthermore, they are
easily related to the observable behavior of the cavity, being a
simple function of the contrast between maximum Ty, and
Tmin transmission through
22

=1+,
Tiin n

Tmax

@n

The inversion formulas for 4 and R in terms of T,y and F are

R=1+ ”222“;“ -z ;’“a" <1 + "242"1“ )1/2 (22)
1 7r2 T 172 1/2

A=1-— 1+ -2 {14—= 23
R [ 2% F ( 4?2) ] (23)
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The behavior of ug as a function of T, and ¥ is shown in
Fig. 4. Now we see that, if the optimum Tp,,, is chosen for
each finesse ¥, then the figure of merit yy increases mono-
tonically with increasing . This tells us that we may obtain
as high a u, as desired, provided we can engineer a cavity with
a sufficiently high finesse §. In practice, the finesse obtainable
from a cavity is limited by inhomogeneities in the cavity
mirrors and medium. Note, however, that the fundamental
limit on ¥ is not imposed by the fact that we always have
finite absorption in the cavity. Our calculations include the
effect that, in order to obtain higher F and uo, we must use
ever thinner nonlinear mediums (i.e., less absorption per pass).
The limit on po and, hence, the limit on the minimum in-
tensity at which bistability can be obtained for a given ma-
terial, is set only by the limits of cavity technology.

If we assume, then, that we are practically limited to a par-
ticular maximum finesse ¥, then one obvious optimization
procedure is to choose Ty, to give the maximum figure of
merit for a fixed finesse; this is then seen to be a more useful
procedure than arbitrarily choosing R at fixed 4 or 4 at
fixed R.

From differentiation of (18) with respect to A at constant
R, (and, hence, constant F and ¥), it is readily shown that the
optimum choice of R and A for a given finesse is

\2\2 g
Ryni =1-Agpt =VRy = {1 | —= -
opt opt o ( (25) ) 23_-
This gives the very simple, exact conclusion that, if the mirror
transmissivity 1 - R is chosen equal to the absorption per pass
A, then the resulting cavity has the maximum figure of merit
Mo for its finesse F.
From (24) we can calculate the optimum maximum trans-
mission T,y for a given finesse F, giving

N 1G5 D S
Tl R )]

(25)

(24)

This relation is plotted as the dashed line in Fig. 4.

Equations (24) and (18) can be used to give an exact analytic
relation for the optimum yo. The optimum pg, 4gpt, and
1 - Rypy are plotted in Fig. 5 as a function of the finesse ¥.
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Fig. 5. Optimum cavity figure of merit uo (equal reflectivities) for a
given finesse as a function of that finesse, together with the corre-
sponding design values of mirror transmissivity (1 — R) and absorption
per pass A, these two quantities, (1 - R) and A, being exactly equal
for this optimization.

Note from (25) that there is an optimum transmission. If
the cavity is designed for higher transmission in particular, the
fall-off in py is rapid, and there is also nothing to be gained
by going to cavity designs with lower transmission than
the optimum.

V. HiGH FINESSE APPROXIMATION

In the limit of high finesse (i.e., small 4 and 1 - R) the rela-
tions describing the absorbing nonlinear refraction Fabry-
Perot become very much simpler, while still retaining forms
similar to the exact results. We retain terms only up to the
lowest order in A or 1 ~ R or in both, as appropriate.

The finesse ¥ is approximated by

F~n/(1-R+A4) (26)
and
Thax = [(1 - R)/(l - R +A)]2' (27)

The cavity figure of merit i, [see (18)] simplifies to

3V3  A(Q-R) 33

Ho > 77(1_R+A)3-“ 2 FVTmax (1 - vV Tmax)
(28)
and the critical detuning 8, [see (15)] becomes
7v3 2.72
6, ~ ~—

(see Fig. 2) with yl.¢¢ ., the required critical nonlinear phase
thickness change [see (14)], given by

Lo ~25 o 181
7effc—3 c—\/ﬁ— g -

The conditions for the optimum figure of merit for a given
finesse become, from (24)

(30

n  1.57
- Ropt =Aoptzﬁ: 5 (31)
(see Fig. 5) and, from (27)
Tmax opt = % (32)

The optimum figure of merit for a given finesse ty op¢ then
becomes
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(33)

(see Fig. 5).

As can be seen from Figs. 2, 4, and 5, the high finesse ap-
proximation is very good for ¥ 2 10. For relations (29), 6.,
and (33), Mg opt, it remains a good description even down
toF~1.

In the high finesse limit the behavior of the optimized equal
reflectivity cavity (1 - R=A4) can be described particularly
simply. For example, off-resonance, it reflects 1 - 372/16F2,
absorbs m*/8F 2, and transmits 72/16%2 of the incident light;
at the critical detuning &, the values of reflectance, absorp-
tion, and transmission are §2, %, and L, respectively (inde-
pendent of ), and on-resonance %, 1, and 1, respectively.

VI. DiscussioN AND CONCLUSIONS

Because the relations describing the cavity behavior [(7) and
(10)] are analogous to those obtained for refractive bistability
without absorption [8], the general behavior of the cavity will
be similar, except that transmission and reflection are never
unity and there is always some absorption inside the cavity.
The definition of finesse, rather than depending only on the
mean-mirror reflectivity R, must now include absorption,
giving ¥ =m+/R(1 - A)/[1 - R(1 - A)] where 4 is the single
pass absorption through the material. The critical mistuning
5. for the onset of bistability is, however, only dependent
on ¥.

When (7) and (10) are solved for the critical intensity for the
onset of bistability /., the important material parameter for a
given choice of cavity parameters (i.e., reflectivities and ab-
sorption per pass) is § = 3n,/Aa; this is essentially the ratio of
refractive nonlinearity to linear absorption and reflects the
fact that, for example, with a material of, say, weaker absorp-
tion coefficient a, we can tolerate a correspondingly weaker
nonlinearity n, because the material can be made correspond-
ingly thicker inside the cavity, and the same switching in-
tensity is retained.

In examining how the cavity can be designed to reduce the
switching intensity, we conclude firstly that making the back
cavity mirror more reflecting (while keeping the mean re-
flectivity constant) leads to <2 times reduction in I, at the
expense of transmission. The cavity “figure of merit” for
equal reflectivities depends only on R and 4. However, there
is no single optimum cavity design, except the limit R — 100
percent 4 -0 when I, - 0. While high R and low A4 can be
achieved, the more severe practical limitation is on finesse,
higher finesse requiring higher optical perfection on materials
and mirror surfaces. Optimizing to give minimum /, for a
given finesse leads to the simple exact design 1 - R=A4, je.,
mirror transmissivity is equal to absorption per pass. At high
finesse this leads to /, « 1/ § and a maximum transmission of
the Fabry-Perot of 5.

As an illustrative calculation, InSb at 77 K at 1852 ¢cm ™! has
ny =3 X 107 cm?/W and a =80 cm™ [6]. Allowing for the
possibility that standing-wave effects may disappear due to
diffusion reduces § by % [8], giving 8=0.14 cm?*/W. For a
finesse of ~30 with R =95 percent and A4 = 5 percent (imply-

ing a sample thickness of 6 um), I, would be ~0.4 W/cm?
(4 nW/um?).

In summary, we have been able, within the limitations of the
plane-wave approximation, to solve for refractive nonlinear
Fabry-Perot action in the presence of linear absorption, and to
give criteria for optimizing the design of such systems for
minimum switching intensity.
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