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An extended theoretical discussion of a novel general method of obtaining optical bistability is given. The method
uses absorption that increases as the material becomes more excited and requires no mirrors or other external feed-
back. Criteria for bistability and differential gain are derived for a simple case, and specific illustrative analytic
results are given. Limiting relations are derived for the switching powers and the width of the bistable region. It
is shown that this general class of bistability encompasses at least six previous independent and unrelated investi-
gations of mirrorless bistability in specific physical systems. The common general requirements for this bistability

are discussed together with its attributes.

1. INTRODUCTION
Optical bistability (OB) and the associated switching and
differential gain are phenomena that can be obtained in a
variety of ways. Several of these ways have been categorized!;
it is usual for bistability to arise from the combination of a
microscopic nonlinearity (such as intensity-dependent re-
fractive index) and a macroscopic feedback (such as mirrors
and cavities). However, as has recently been pointed out,2
there have been several independent discussions3-6 of OB in
specific physical systems without mirrors or other external
or macroscopic feedback that all appear to belong to a further,
separate class of OB.2 Indeed, there have been several more
independent discussions that I now believe also belong to this
class.”-? Extensions of some of these discussions are now
availablel®11 as is a discussion of a related general class.!2
Recently, with the invention of the self-electro-optic effect
device (SEED), a hybrid version of the same bistability has
been demonstrated.!® The principal unifying characteristic
of this class is that the positive-feedback mechanism that leads
to OB is internal to the material and results from optical ab-
sorption that increases as the material becomes more excited;
the resulting increase in absorption makes the material yet
more excited, giving yet more absorption, and so on. Con-
sequently, this phenomenon has been called OB due to in-
creasing absorption.? The inverting logic operation and the
absence of mirrors or of resonant cavities make this class of
OB particularly interesting from a practical standpoint.
The historical development of this class appears to be as
follows: Kaplan® analyzed theoretically the behavior of a
relativistic electron gas under optical illumination and de-
duced optically bistable behavior, although the extension of
a new general principle was not made and the feedback
mechanism resulting from increasing absorption was not ex-
plicitly recognized. Independently, Hajto and Janossy,?* in
investigations of optical effects in amorphous GeSes, observed
several hysteretic and switching effects that were a result of
a variety of mechanisms in this material. However, they
identified a thermal mechanism for OB that was in qualitative
agreement with some of their results, and they provided a
simple model identifying the increasing-absorption mecha-

nism. Again independently, Rossmann et al.” observed a
hysteresis phenomenon in CdS platelets that they tentatively
ascribed to an increasing absorptive-feedback mechanism.
Further research reinforced this interpretation,!® indepen-
dently deriving a model similar to that in Ref. 4. Almost si-
multaneously with the research by Rossmann et al., Bohnert
et al.® independently observed a qualitatively similar hys-
teresis effect in CdS that they also independently ascribed to
OB resulting from increasing absorption; this was followed by
further analysis!! (the connection with Ref. 7 was then noted).
In yet another independent discussion, Hopf et al.,% in con-
sidering theoretically the effect of local field corrections on
the behavior of a dense collection of two-level systems, found
a possible mirrorless bistability. Then Miller et al.? pointed
out that many of these previous discussions3-6 seemed to be
concerned with the same basic mechanism and discussed some
of the general features of the class. In their paper,? they also
presented a thermal-bistability experiment designed to test

.the mechanism, with other bistability mechanisms specifically

excludable, and showed clear quantitative agreement between
experiment and theory. This was followed by a hybrid
demonstration of the same class of bistability in the SEED13
with good agreement between theory and experiment. In
other recent work, Dagenais® also independently discovered
thermal bistability resulting from increasing absorption in
CdS; Tooley and Seaton?® observed bistability in InSb that is
likely also to be thermal bistability resulting from increasing
absorption, and Goldstone and Garmire!? analyzed mirrorless
refractive bistability considering also a general formalism in
which their refractive bistability and the present absorptive
bistability were special cases. This bistability mechanism has
therefore apparently been described independently at least
six times. Ironically, the reason for this may be the univer-
sality of the mechanism; for the most part, the descriptions
have been in response to considerations of particular and
apparently exceptional physical systems, so that the univer-
sality was unrecognized or at least unpublished.

The purpose of this paper is threefold. First, since nearly
all the discussions of this OB have been independent, with
most researchers unaware of the connection with other dis-
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cussions, it is important to show the connection and the uni-
versality of the mechanism; in many cases, the connections
are not obvious, and the previous discussion was necessarily
too brief to explain any of these connections in sufficient de-
tail. Second, given the universality of the mechanism, it is
important to establish what the necessary physical attributes
of the material are (insofar as it is possible to prescribe these
in the general case) and what the general characteristics of the
bistable and differential-gain behavior are. Third, with the
possibility of practical devices, it is important to understand
the origins and the limits of the amplifying and the switching
behavior. In this paper, we attempt to address all three of
these issues and draw some conclusions in each case.

In Section 2 of this paper, the general theory of this bista-
bility is described, and general relations for the existence of
bistability and differential gain are derived. In Section 3, I
give detailed exemplary results for a simple, analytically
solvable example, and, in Section 4, I derive various simple
limiting relations for switching powers and the width of the
bistable region. In Section 5, the various other discussions
of this class of bistability?-13 are compared to show the con-
nections and to identify the common features. Finally, in
Section 6, I draw general conclusions from this research.

2. GENERAL FORMALISM

Suppose that we have a.material whose absorption A increases
as it becomes excited. We presume for the present analysis
that the degree to which the material is excited can be ade-
quately described by one parameter N; this is, of course, a
simplification of any real physical situation, although it is a
good approximation in many of the situations discussed. In
the various systems discussed, N takes many different forms,
such as temperature rise, 2489 excited population den-
sity,5-7-10.11 and voltage change,!3 and I will discuss this point
more fully in Section 5. For the moment, we use the most
general form and simply express A as a function of N:

A=AWN). (1)

Now we assume that the degree of excitation depends in the
steady state proportionately on the rate of absorption of en-
ergy. If a power P;, is incident upon the medium, we have

N = T]APin. (2)

Here, 7 is a proportionality constant. Note that we are as-
suming that all the absorption A contributes to exciting the
medium and that the degree of excitation is directly propor-
tional to the absorbed power. Neither of these is a necessary

restriction: The current theory could readily be extended to -

account for background absorption that does not contribute
to N and for other functional relations between N and ab-
sorbed power by appropriately altering Eq. (2). Such so-
phistications will not, however, be treated in this paper. Also,
in this paper I treat only the steady-state solutions and do not
discuss transient effects or stability; the stability of states in
the bistable region has been checked experimentally,? and
critical slowing down has also been seen.?

The general solution for A as a function of Py, is simple: If
A is known as a function of N [Eq. (1)], solve Egs. (1) and (2)
simultaneously to eliminate N. This is a simple generaliza-
tion of the model of Hajto and Janossy.* This model is readily
visualized graphically. It is more useful and easier to compare
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Fig. 1. Graphical solution of OB resulting from a hypothetical ab-
sorption increasing with increasing excitation. (a) The dashed line
isT=1— A(N)[Eq. (1)]. Lines A-D correspond to increasing power
in Eq. (2). Lines A and D intersect only once with the curve, indi-
cating only one solution for these powers. Lines B and C, each
showing two intersections, represent the critical powers for the switch
to low transmission and the switch to high transmission. Any lines
between B and C would show three intersections as required for OB.
(b) Pout, the transmitted power, is plotted against Pi,, the incident
power, using the solution method from (a). «, n = 1 for simplicity.

with other types of bistability if we use transmission 7" =
k(1 — A) rather than absorption; « is a constant allowing for
all nonabsorptive losses (e.g., reflection and scattering).
Because it does not affect the form of the solutions, we set
= 1 for convenience in the rest of this paper. Output power
Poyt is Poyt = TPy,. Figure 1 shows the graphical-solution
method for a hypothetical A(N). The transmission is de-
duced from the intersection points of the straight lines [from
Eq. (2)] with the curve [from Eq. (1)]. Triple intersections
of a line with the curve imply a bistable region at the power
associated with this line.

The reason for the existence of bistability and/or differ-
ential gain can be explained through the following regenera-
tive mechanism. Increasing power Pj, results in increasing
N [through Eq. (2)]. Increasing N gives increasing A [through
Eq. (1)], which results in a further increase N [through Eq.
(2)]. This process clearly feeds on itself (i.e., it is regenerative)
and can result in enhancement of absorption changes (leading
to differential gain) or in switching (giving bistability). The
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general conditions for differential gain and bistability are
derived below.

Note that A must depend on N and not merely on Pjy;
otherwise the regenerative loop is broken. This means that
no conventional optical nonlinearity that can be rigorously
expanded in a power series of electric field (in which the
coefficients are the susceptibilities x (™) can give rise to these
effects, unless at least one x(™) depends on the real state of
excitation of the medium, N.14 In the situations analyzed in
this paper, we assume that the imaginary part of x) depends
on N. Thus, for example, the nonlinearity associated with
two-photon absorption could not cause this kind of bistability
unless the two-photon absorption coefficient also depended
on N. Such asituation could be handled by generalizing the
present theory to allow for A = A(N, Pi,). Nonlinearities in
which the optical response depends on the real state of exci-
tation rather than directly on the electric field are sometimes
called dynamic,'® and it is crucial that the nonlinearity be
dynamic for this bistability. Another way of describing such
optical nonlinearities would be to call them indirect, as the
optical response does not depend directly on the electric
field.

A. Condition for Amplifying Differential Gain
The differential gain is

dPout d
N — [P (1 - A)]. 3
dP;, dPi [Pin ) ©)
Now we have the identity
dA dA /dPj,

dP,, dN/ dN
Therefore, using Eq. (2) to obtain a sustitution for dP;,/dN,
we obtain

dA A2
= @
dPin A N
dA/AN
By using Eq. (4) we therefore obtain from Eq. (3)
dPoy NA
Mo (1-4) - ————. (5)
dPin A N
dA/dN

Note that this is independent of . The condition for am-
plifying inverted differential gain is dPou/dP;, < —1. After
rearrangement this condition becomes

dA _AQ@=-4)
dN 2

This differential inequality can be solved to give the equiva-
lent condition for amplifying inverted differential gain:

Ay > P )

1+ 20 (l - 1)
N2 Al

for some AI = A(Nl), Az = A(NQ), with N2 > N1 and A2 > Al.
This condition means that if there is a range of N from N to
Ny for which this condition is satisfied, then there will be
differential gain overall in this region.

Although it is difficult to give a simple interpretation to
condition (6) or (7), the requirement on A(N) is sublinear in

N (6)
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N, i.e., A proportional to N will give infinite differential gain,
so the requirement for finite differential gain is A less than
proportional to N.

One other simple analytic A(N) is worth mentioning here
if only because it is ultimately uninteresting, namely,

A(N) =1 — exp[-(yN + B)], 8)

where B and 7 are positive constants. This represents an
absorption coefficient (as distinct from the total fractional
absorption A) that increases linearly with N. Since an ab-
sorption A « N shows infinite differential gain at the critical
power, it might be thought that this related nonlinearity (A
o« N asymptotically for B = 0) might also show at least dif-
ferential gain. In fact, it does not, as can be verified by sub-
stitution in relation (6). Even for B = 0, the maximum
(negative) differential gain is —1.16 Thus, in a system in which
the absorption coefficient depends on N, a necessary condition
even for amplifying differential gain is that the absorption
coefficient be more than proportional to N.

B. Condition for Bistability

It is clear from the graphical visualization that the borderline
condition for multiple intersections of straight line and a curve
is that in which the straight line is tangent to the curve. If the
curve is any steeper, multiple intersections must result. We
can write this condition as

a4

dN N
This differential inequality is readily solved to give the
equivalent condition

9)

AZ >——A1, (10)

where A; > A, and Ny > Ni. That is, if there is a region from
Nj to Ns for which this condition is satisfied, then there will
be bistability in this region. This condition has a simple in-
terpretation: For bistability, A must be more than linearly
proportional to N over some region of N.

The borderline condition can also be derived from the ex-
pression for differential gain [Eq. (5)]. If A « N, the differ-
ential gain becomes infinite as expected for the onset of
switching action.

3. ANALYTIC EXAMPLE

To illustrate the theory in a relatively clear way, we must
choose a form for A(INV) that is not unphysical and yet is simple
enough to be analytically solvable. We choose

B
1+ (oN — )2

where 3, p, and o are constants with0 < § < 1sothat 0 < A
< 1. This corresponds to a Lorentzian absorption profile that
shifts with increasing excitation N. p is a proportionality
constant, and o represents the original detuning of the oper-
ating point from line center. In the limit of small 3and N =
0, this is the actual absorption that would be seen for a classical
Lorentzian line. This is not meant to model any particular
situation exactly, although it can, in practice, model the ex-
periment in Ref. 2 and probably also that of Ref. 8 fairly well.

A(N) (11)
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Substituting for N using Eq. (2), we obtain

_ B
1+ (pnAPj, — 0)?

This can be solved exactly for A in terms of P;, and hence for
P,y in terms of Pj,; the solution involves solving a cubic
equation whose roots determine the one or three intersection
points of straight line and curve of the graphical method.
This can always be done but is tedious. Instead, we merely
calculate analytically the switching points by using relation
(9). At the switching points (dA/dN = A/N),

pN = (20/3)(1 £ R), (13)

(12)

where

3(1+ o))12
R= ll _3 <_6_>] .
o2
The corresponding absorption at the switching points is [using
relation (10)]

A= 6 )
1+ (02/9)(1 + 2R)?

and the switching powers are [using Eqs. (2), (11), and (13)]

2 o
P,=——1(1

s = 3 Bpm (1xR)
The switching powers-are plotted in Fig. 2 as a function of o.
There are no solutions for ¢ < 4/3; the square-root term be-
comes imaginary for |o] < /3, and negative solutions are
excluded for positive N [Eq. (13)]. For o > /3 (ie., by
moving /3 or more linewidths below the line), bistability
appears, and the width of the bistable region (the difference
between the two switching powers) becomes progressively
larger.

Figure 3 shows calculated input-output characteristics for
this shifting Lorentzian system. The trend from no differ-
ential gain for ¢ << +/3 through differential gain and eventu-
ally into broad bistability as o increases is clearly seen. These

(14)

o2
1+ ry (1 ¥ 2R)?|- (15)
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Fig. 2. Switching powers for a shifting Lorentzian line as discussed
in the text. Dimensionless units are used (p = 8 =7 =1).
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Fig. 3. Calculated input-output characteristics for the shifting
Lorentzian example showing (a) no differential gain or bistability (¢
= 1.1), (b) differential gain near Py, = 1.4 (o = 1.5), (¢) bistability (¢
= 1.9), and (d) bistability with a broad bistable region (¢ = 2.3).
Dimensionless units are used (p = 7 = 1). £ is chosen as 0.9.

curves are calculated by evaluating A for a range of N and for
each N deducing Pj, from Eq. (2). Pyt is then deduced from
A and P;,. This simple technique can be used for any func-
tion A(N).

I have performed simulations for a variety of functions
A(N) (e.g., shifting Gaussian functions, linear functions,
quadratic functions, step functions). All those that display
bistability or strong differential gain show qualitatively similar
sawtoothlike characteristics, such as those shown in Figs.
3(b)-3(d); this characteristic seems to result from any ab-
sorption that monotonically increases with N and that is
sufficiently nonlinear to display differential gain and/or bis-
tability.

4, LIMITING RELATIONS

In the above, I have given general analytic solutions and a
specific analytically solvable example. The aim of this section
is to derive further general relations that give physical insight
into such characteristics as the switching power and the width
of the bistable region. Ideally, such relations should give
enough information to predict the main features of the oper-
ation of a given system without requiring detailed knowledge
of, for example, A(N); in what follows, relations in two limiting
cases are derived for switching powers that go some way
toward this ideal.

First, I derive an exact limit on switching or operating
power. Suppose that we have a system that we know displays
bistability. We restrict ourselves to an A(N) that increases
monotonically with d2A/dN? positive (i.e., the absorption
bends up) up to the first switching point (i.e., the switch to low
transmission). The condition for the critical power for
switching is [relation (9)] dA/dN = A/N. Since d?A/dN?is
positive, dA/dN = dA/dN]|n=o up to the first switching point.
Therefore we obtain
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AW dA

e ’ 1
N1 dN|~=0 ( 6)

where N is the excitation when the first switching point is
reached. From Eq. (2), therefore, the switching power P at
this first switching point can be written as
1
ndA/dN|n=o

This condition can be used by itself. However, by using the
identity

Py (17)

dA _dA ,dN

dN dPin dPin
[substituting Eq. (2) for dN/dP;,] we obtain

A(0)
Pipf——m— 18

! dA/dPi| py=0 (182)

or
1
P (18b)

<f——
d logA/dPin| Pin=0

where we have used the fact that the conditions N = 0 and P;,
= 0 are equivalent for A = 0 [from Eq. (2)]. Relations (18)
therefore give a simple upper estimate of switching power (if
the system is going to switch) in terms of measurable param-
eters at low power; the only requirement is that the absorption
bend upward with increasing N up to this switching point.

In some situations, relations (18) greatly overestimate the
switching power. This is especially true in situations in which
A increases rather abruptly with N. An extreme case is the
step function (where dA/dP;y| p,,=0 = O)17:

1 T
— _ —_ —_—
- 1
2 |
o |
n |
%)
> : T=1-A(N)
P4
e |
m —— — g—— ——— — — — — —
—
N
T=q-—
7Py
T=1-N
0 | 7P
No

EXCITATION, N

Fig. 4. Realistic abrupt function with associated critical power
(straight lines). For comparison, the step function (dashed line) with
the same peak absorption and Ny is shown. The powers P; and Py
are lower for the realistic function than those for the step function
because the corresponding lines have steeper slopes than those for
the step function (which must pass through the corners).
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A =A1,N<N0,
A= A2,N >N0 (A2 > Al) (19)

This function is shown as the dashed line in Fig. 4.
The solutions for the switching powers here are trivial:

Py = Ny/nAy, Py = No/1As (20)

These powers correspond to straight lines T = 1 — (NA1/Ny)
and T = —NAy/Ny, which would pass through the vertices of
the dashed line in Fig. 4. To interpret the usefulness of the
step-function solutions, consider the more realistic function
shown as the solid curve in Fig. 4. This function is still rela-
tively abrupt and has an absorption peak at excitation Ny; the
mathematical restrictions that we will put on this function for
the following argument are the following: (1) The function is
monotonically increasing in absorption (decreasing in trans-
mission) up to No and (2) the function has an absorption
maximum at Ng (with absorption A,). It is clear from Fig.
4 that P; and P are both lower than the corresponding powers
for the abrupt nonlinearity (this is deduced directly from the
relative slopes of the straight lines). This is a general result
that can readily be rigorously proved given the above re-
strictions on the function. Therefore we have two new limits.
For a function A(N) that shows bistability and increases
monotonically up to a peak A, at N = Ny, the switching
powers obey the relations

P; < No/mA(0), (21)
N,

Py <—2. (22)
nAp

Result (21) is clearly an upper bound that may be well above
the actual P;. However, in practice, relation (22) gives a close
estimate of switching power from low to high transmission
(P9); it is asymptotically correct for large ¢ in the Lorentzian
case analyzed above and agrees within 10% over the whole
range of ¢ > /3. These results [relations (21) and (22)] will
also be approximately correct even if the function A(N) does
not have a peak but merely has a sharp knee at N with ab-
sorption Ap,.

The step function A(N) also gives insight into the width of
the bistable region. Clearly, for the step function, the width
W expressed as a fraction of P is
u =1 - ﬂ, (23)

Py As
We can extend the argument one step further to show that this
W is an upper limit for the realistic function in Fig. 4. Tt is
clear from Fig. 4 that the excitation that corresponds to the
actual Ps for the realistic function is not N but a slightly lower
value, which we now call Ny’. The actual absorption at which
the switching takes placeis A’ <Ap,. Therefore P;=N¢'/nA’
> Ny//nAp. Because the function A(N) is single valued (i.e.,
it cannot double back on itself), the excitation corresponding
to the actual P; for the realistic function must be less than Ny’
so that P; < N¢'/7A(0). Therefore the width W of the bi-
stable region for this realistic function becomes after some
manipulation

W=

A
P

This general form of relation is borne out by simulations, with
relative bistable width increasing with decreasing A(0)/A,.

W<1- (24)
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The accuracy is improved if A(0) is replaced by the actual
absorption A just before the switch to low transmission (if
this number is known). For the Lorentzian profile, a relation
W =1-¢€A1/Ap is accurate for e = 1 for o = V3toe=3aso

m~

5. COMPARISON WITH OTHER DISCUSSIONS

In this section, I attempt to point out the relation between the
general principle in this paper and the previous specific and
largely independent discussions of what I believe to be the
same general class of bistability.

Kaplan? proposed theoretically that bistability could arise
in a relativistic electron gas under appropriate illumination.
The mechanism appears to be as follows: The photon energy
of excitation is chosen just below the cyclotron-resonance
frequency of the unexcited gas, where there is still significant
optical absorption resulting from broadening of the cyclotron
resonance. As the incident power is increased, the power
absorbed in the electron gas results in an increase in the ki-
netic energy (or, equivalently, in the temperature) of the gas.
This increased electron energy results in a higher average mass
for the electrons (or a higher average effective mass in the
analogous quasi-relativistic nonparabolic semiconductor band
case) and hence a lower cyclotron-resonance frequency. This
movement of the cyclotron resonance toward the exciting
photon energy gives increased absorption. Thus the in-
creasing-absorption regenerative loop can be established, and
bistability can result. The degree of excitation N could be
chosen as (1) the total energy of the electron gas, (2) the av-
erage energy of an electron, or (3) the temperature of the
electron gas, and a simple comparison can be seen with Eq. (2),
where N is proportional to absorbed power. It is also possible
to define N as, for example, the average electron velocity
(magnitude) or the average electron effective mass; N would
then no longer be linearly related to absorbed power (given
curves instead of straight lines in the graphical solutions), but
the functional form of A{N) would change accordingly, giving
identical final solutions.

In the case of Hopf et al.,5 the specific system considered
is a dense gas of two-level systems. Inclusion of the local field
gives a Stark shift of the optical transition to lower photon
energy. However, as the gas is optically excited, this local field
is progressively reduced as more atoms are raised to the ex-
cited state. Thus, if the photon energy is chosen on the high
side of the absorption line at lower excitation, then with in-
creasing excitation the Stark shift is progressively reduced,
and the absorption line shifts up toward the photon energy,
giving increased absorption and hence the possible regener-
ative mechanism. The most obvious choice for the degree of
excitation N is the population inversion® or the number of
excited systems, which is likely to be linearly proportional to
the absorbed power.

The cases of thermal bistability resulting from the shrink-
age of optical band gap with increasing temperature489 are
particularly simple to relate to this general mechanism. In
all cases, the photon energy is chosen below the band-gap
energy so that the increased temperature resulting from ab-
sorbed power shrinks the band gap, giving increased absorp-
tion and hence establishing the regenerative mechanism; the
obvious choice for N is temperature rise, which is again likely
to be approximately proportional to absorbed power.
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In the SEED,13 a quantum-well electroabsorptive modu-
lator is connected in series with a large resistor to a reverse-
bias supply. The photon energy is chosen so that decreasing
voltage on the modulator gives increasing absorption. Fur-
thermore, over a large range of voltages, the modulator also
works as a photodetector of constant internal quantum effi-
ciency, so that a photocurrent that is directly proportional to
absorbed power is generated. Thus increased incident optical
power gives more photocurrent, which gives more voltage drop
across the series resistor, less voltage across the quantum well,
and hence greater absorption. Thus the increasing absorption
regenerative loop is established. The obvious choice of N is
photocurrent, although voltage change across the quantum
well would do equally well. Because the quantum efficiency
falls off at low voltage, the strict proportional relationship
between photocurrent and optical absorption breaks down,
and the simple relation of Eq. (2) is then inaccurate. How-
ever, Egs. (1) and (2) become exact descriptions of the SEED
if absorption A is replaced by responsivity S (current/incident
optical power), although transmission 7 is no longer simply
related to S.

The case of CdS considered by Bohnert et al.8 and by
Schmidt et al.1! is slightly more complex in that it is believed
that, at low intensities for the photon energies used below the
band-gap energy, there will initially be negligible linear ab-
sorption. However, the intensities used are sufficiently high
that two-photon absorption will be appreciable, and some
photoexcited carriers will be created. Once this happens, the
band-gap energy will start to renormalize to lower energies
because of the change in self-energy of carriers in the presence
of a plasma. Consequently, at sufficient incident intensity,
the linear absorption becomes significant because of this
renormalization, giving yet more excited carriers, more
renormalization, and more absorption, thus establishing the
basic increasing-absorption regenerative mechanism. N is
basically the carrier density with an approximately linear
relationship between N and absorbed power expected at high
powers if a constant carrier lifetime is appropriate.!! How-
ever, in the steady state, in general, the relations of Egs. (1)
and (2) would have to be further sophisticated to allow for N
as a function of both linear absorption A and the two-photon
absorption.

In the case of the research of Rossmann et al.” and of
Henneberger and Rossmann,!® the suggested microscopic
mechanism for increase of absorption in CdS is different from
that given in Refs. 6 and 9, with broadening of the exciton line
being proposed. However, the basic mechanism is phe-
nomenologically similar; increased carrier density (presum-
ably resulting in this case from only single-photon absorption)
results in an increasing absorption in an appropriate spectral
region below the band-edge energy and hence the required
regenerative mechanism. The theory of bistability!? uses a
similar graphical method to that used here and in Refs. 2 and
4, and the steady-state models are all essentially equivalent.18
Henneberger and Rossmannl® also consider some of the
consequences of including or neglecting diffusion of the ex-
citation. The simple model in this paper implicitly assumes
total diffusion of the excitation so that the entire material can
be characterized by one parameter N (e.g., temperature re-
sulting from full thermal diffusion or carrier concentration
resulting from carrier diffusion). If diffusion is totally ne-
glected, the switching action disappears, 10 although hysteresis
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remains; however, including even limited diffusion restores
the switching transitions. This situation is reminiscent of the
existence of whole-beam switching in Fabry—Perot bistability
with Gaussian input beams; simple plane-wave theory ne-
glecting diffraction and diffusion predicts hysteresis but no
switching, but, in practice, switching is seen.

Goldstone and Garmire!2 do not consider explicitly the case
of bistability resulting from increasing absorption. However,
they do consider an interesting general formalism in which the
optical field E is a single-valued function of the state of the
medium as expressed by the polarization P rather than the
more normal expression, P as a function of E. In this for-
malism, it is possible to obtain bistability without apparent
feedback.!® It is easily seen that the mechanism of bistability
resulting from increasing absorption is a special case of this
formalism. The internal optical field (e.g., as represented by
the output power) is a single-valued function of the state of
the medium (e.g., as represented by the absorption A4 or by the
degree of excitation N). However, the converse is not true;
the state of the medium is many valued (bistable) as a function
of the internal optical field. This point is equivalent to the
point made in Section 2 of this paper: that OB resulting from
increasing absorption cannot result from a polarization ex-
pandable as a power series in the optical field (with constant
coefficients).

6. CONCLUSIONS

The conclusions that can be drawh from the above exposition
can be separated into three parts, corresponding to the three
stated purposes of this paper.

First, the discussion in Section 5 demonstrates that there
1s a common underlying mechanism of OB resulting from in-
creasing absorption in a large number of discussions of mir-
rorless bistability.Z-13 These discussions represent at least
six independent descriptions of the same principle. Many
of the theoretical models used-5:89.13 gppear to be exactly
reducible to the simple case described in general terms in
Section 2 of this paper. Others require transient ef-
fects, 871011 limited diffusion,10 or more-elaborate absorption
mechanisms,!! although the basic principle is similar.

Second, various universal aspects are apparent. Most
fundamental is the restriction that the nonlinearity that gives
rise to this bistability cannot be expanded as a power series
in the optical field (with constant coefficients) so that (con-
stant) nonlinear susceptibilities are not an adequate de-
scription. In all cases of absorptive bistability discussed in
this paper, the change in optical properties is a function of the
real state of excitation of the material rather than of the op-
tical field. Inthe simplest steady-state case in which all ab-
sorption of optical power contributes equally to the degree of
excitation, the requirement on the material for bistability to
exist is simply that the absorption be more than linearly
proportional to the degree of excitation. A general condition
for differential gain can also be derived. As to the general
behavior of the bistability, the switching with increasing power
is always to a state of higher absorption with an increased
internal energy of the medium. Except when diffusion is
totally neglected, ! the systems show hysteresis and switching.
In all the numerical simulations that I have performed and
in all discussions in which the dependence of the bistability
on other parameters of the system is considered in detail, there
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"is a gradual evolution of the input—output characteristic

through differential gain into bistability with increasing width,
as an appropriate parameter (e.g., detuning) is altered; this
is similar to other types of bistability and to first-order phase
transitions in general. Qualitatively, it seems to be easier for
one to obtain this bistability with a shift of an absorption
feature?-6:89.11.13 rather than with broadening (only Refs. 7
and 10 suggest broadening). This is in agreement with my
numerical simulations and is easy to understand from the
graphical solution in the simple case analyzed in this paper,
in which absorption must increase more than linearly with the
degree of excitation for bistability; if the absorption shifts
linearly with the degree of excitation, there will always be some
initial detuning for which the bistability condition is satisfied
regardless of the shape of the absorption feature, whereas for
broadening, the existence of bistability is critically dependent
on the precise functional form of the broadening.

Third, for the simple case analyzed in this paper, it is pos-
sible to derive limiting relations for switching powers with only
minor restrictions on the functional form of A(N). Ingeneral,
larger absorptions lead to lower switching powers. One of the
more important general conclusions of the discussion in Sec-
tion 4 is that the width of the bistable region tends to be con-
trolled by the contrast ratio between the high-transmission
and the low-transmission states, with higher contrast per-
mitting a broader bistable region.

In conclusion, the great variety of physical systems that
show this bistability suggests that there may be many other
diverse systems capable of showing it, and the simplicity of
the mechanism together with the absence of mirrors or other
external feedback makes it attractive for practical applica-
tions. It also does not necessarily require coherent
light.213
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the present situation, the expression in terms of N is correct,
whereas because of the feedback the expression in terms of £
alone is demonstrably incorrect. The response of this system is
not even a single-valued function of E in the bistable region and
hence cannot even be expressed as a power series in E. (By
contrast, in a Fabry-Perot bistable system with a Kerr nonlin-
earity the response of the nonlinear medium remains a constant,
single-valued function of the internal electric field at all
times.)
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Care must be taken with the power-series expansions to prove
this, requiring at least a second-order expansion.

A similar step function has also been considered by F. Henne-
berger and H. Rossmann.10

The condition derived for the existence of bistability in the sim-
plest case (i.e., N proportional to AP;y) in this paper [expressions
(9) and (10)] and in Ref. 2 is actually equivalent to that given in
Ref. 10, Eq. (4) under the same conditions except that, in our case,
we use total absorption A, and in Ref. 10 the absorption coeffi-
cient o is used. This appears to contradict the conclusion in this
paper [see the discussion in Section 2.A concerning Eq. (8)] that
the condition for absorption coefficient « is different from that
for total absorption A. However, the difference is that the
present treatment assumes implicitly that there is strong diffusion
of excitation (e.g., A is a function of one well-defined temperature
or carrier concentration of the whole material), whereas Eq. (4)
of Ref. 10 assumes totally local response (i.e., no diffusion).
There is no physical contradiction between the contention of
Goldstone and Garmire!? that their class of bistability requires
no feedback and my identification of a feedback mechanism for
OB resulting from increasmg absorption. What is true in both
cases is that no external feedback is required.



