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Abstract

Source coding theorems and Shannon rate-distortion functions were studied for the
discrete-time Wiener process by Berger and generalized to nonstationary Gaussian autore-
gressive processes by Gray and by Hashimoto and Arimoto. Hashimoto and Arimoto pro-
vided an example apparently contradicting the methods used in Gray, implied that Gray’s
rate-distortion evaluation was not correct in the nonstationary case, and derived a new for-
mula that agreed with previous results for the stationary case and held in the nonstationary
case. In this correspondence it is shown that the rate-distortion formulas of Gray and
Hashimoto and Arimoto are in fact consistent and that the example of Hashimoto and Ari-
moto does not form a counterexample to the methods or results of the earlier paper. Their
results do provide an alternative, but equivalent, formula for the rate-distortion function in
the nonstationary case and they provide a concrete example that the classic Kolmogorov
formula differs from the autoregressive formula when the autoregressive source is not sta-
tionary. Some observations are offered on the equality of the asymptotic distributions of
the eigenvalues of the sequence of inverse autocorrelation matrices of possibly nonstationary
autoregressive processes and of their Toeplitz approximations.
Keywords: Nonstationary Gaussian autoregressive sources, rate-distortion functions, Toeplitz
matrices

1 Introduction

A real-valued Gaussian autoregressive source is defined by the difference equation

Xn =

{
−
∑n

k=1 akXn−k + Zn, n = 1, 2, · · ·
0, n ≤ 0

(1)

where the Zn are i.i.d. (independently and identically distributed) random variables with mean
zero and variance σ2 and ak are real numbers satisfying

∞∑
k=0

|ak| <∞ (2)
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and a0 = 1. The autoregressive process can be considered as the output of a linear filter
described by a transfer function 1/A(z) driven by the memoryless process Zn, where

A(z) =
∞∑
k=0

akz
−k. (3)

If the zeros of A(z) (and hence the poles of the transfer function) all lie strictly inside of the
unit circle, then the statistics of the autoregressive process approach a stationary distribution
and the Shannon rate-distortion function of the process is given parametrically in θ ∈ (0,∞)
by Kolmogorov’s classic formula [8] (see also [3]):

D(θ) =
1

2π

∫ π

−π
min

[
θ,

σ2

g(ω)

]
dω (4)

R(θ) = RK(θ) ∆=
1

2π

∫ π

−π
max

[
1
2

ln
σ2

θg(ω)
, 0
]
dω (5)

g(ω) = |A(e−jω)|2 =

∣∣∣∣∣
∞∑
k=0

ake
−jkω

∣∣∣∣∣
2

(6)

where the integral expression (5) is denoted by RK(θ) as it will take a different form in the
nonstationary case while the formula for distortion will remain the same.

Berger [2] proved a source coding theorem for the special case of a nonstationary autore-
gressive process with a1 = 1 and ak = 0 for k > 1 and he showed that the Kolmogorov formula
still provided the rate-distortion function in this case. Gray [4] subsequently proved a source
coding theorem for the general case described previously and derived a rate-distortion function
resembling the Kolmogorov formula, but with (5) replaced by Eq. (22b) from [4] below:

R(θ) = RAR(θ) ∆=
1

2π

∫ π

−π

1
2

ln
(

max
[
g(ω),

σ2

θ

])
dω. (7)

Note that while (7) resembles the Kolmogorov form (5), it is not the same. Both forms are
derived from the finite dimensional versions of the Kolmogorov formula, that is, the finite order
rate-distortion functions. But the mechanics of taking the limit of the finite order expressions
differ in the two cases in a critical way as will be described in detail later. The equivalence
of the two formulas follows in the stationary case because of the existence of source coding
theorems for each, but it does not follow in the nonstationary case.

The two rate expressions RAR(θ) and RK(θ) can be related to each other as follows. Define
the subset E = {ω : g(ω) < σ2/θ} of [−π, π]. Then

RAR(θ)−RK(θ) =
1

2π

∫ π

−π

1
2

ln
(

max
[
g(ω),

σ2

θ

])
dω − 1

2π

∫ π

−π
max

[
1
2

ln
σ2

θg(ω)
, 0
]
dω

=
1

2π

∫
Ec

(
1
2

ln g(ω)
)
dω +

(
1
2

ln
σ2

θ

)
1

2π

∫
E
dω − 1

2π

∫
E

[
1
2

ln
(

σ2

θg(ω)

)]
dω

=
1
2

1
2π

∫ π

−π
ln g(ω) dω

=
1

2π

∫ π

−π
ln |A(e−jω)| dω (8)
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and hence the two formulas will agree if and only if the final integral is 0.

In 1980 Hashimoto and Arimoto [7] revisited the question of the rate-distortion function
in the nonstationary case. They considered the finite order autoregressive case and noted that
both the source coding theorem and the evaluation of the rate-distortion function had been
accomplished for the Wiener process in [2], but they only described the source coding theorem
and not the rate distortion function of [4] for the more general autoregressive case, stating that
“the rate-distortion function has not been calculated for nonstationary processes except for the
Wiener process” and presented an “example which shows the form (3) is incorrect if the process
is not asymptotically stationary, and we present the exact form of the rate-distortion in the
next section.” Their equation (3), however, corresponds to the Kolmogorov form RK(θ) of (5)
and not the autoregressive form RAR(θ) of (7), so that their example provided a demonstration
that the Kolmogorov formula fails in the nonstationary case, but not that there was a problem
with the autoregressive result (7) of [4]. As a result, there has been some confusion about
the validity of the rate-distortion function of [4] in the nonstationary case and the apparently
different result provided in [7] as well as some confusion about applicability of the specific
asymptotic eigenvalue results for Toeplitz matrices used in [4].

We here reconcile the two forms of RAR(θ) and the formula of Hashimoto and Arimoto
for the nonstationary case and demonstrate that they are equal and distinct from the Kol-
mogorov formula for nonstationary autoregressive processes. We also remark on some related
issues regarding the eigenvalue distributions of sequences of inverse autocorrelation matrices of
autoregressive processes and of their natural Toeplitz approximations.

2 Nonstationary autoregressive processes revisited

For the Mth-order autoregressive process (ak = 0 for k > M), Hashimoto and Arimoto correctly
point out that the Kolmogorov formula (5) (their (3)) fails for a simple first order nonstationary
autoregressive source and they state their main result, which replaces (5) in the Kolmogorov
formula by the form

R(θ) = RHA(θ) ∆= RK(θ) +
M∑
k=1

max
[

1
2

ln |ρk|2, 0
]

(9)

where ρk are the zeros of A(z) =
∑M

k=0 akz
−k. Suppose that |ρ1| ≥ · · · ≥ |ρm| > 1 > |ρm+1| ≥

· · · ≥ |ρM |. Then, (9) can be rewritten as

RHA(θ) = RK(θ) +
m∑
k=1

1
2

ln |ρk|2. (10)

In the stationary case, there are no zeros outside of the unit circle and RHA reduces to RK.
RHA can be related to the autoregressive formula RAR(θ) by means of Jensen’s formula (or the
Jacobi-Jensen formula; see, e.g., [1] or [9]). In fact, the relationship holds more generally for
infinite order autoregressive processes if (2) and a0 = 1 hold and hence the more general case
is considered.

Define

f(z) = A(1/z) =
∞∑
k=0

akz
k
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and observe that from (7)

RAR(θ)−RK(θ) =
1

2π

∫ π

−π
ln |A(e−jω)| dω

=
1

2π

∫ π

−π
ln |f(ejω)| dω. (11)

The function f(z) is analytic in a region containing the closed unit circle and f(0) = a0 = 1
and hence it must contain only a finite number of zeros, say αi, i = 1, . . . , m̃, inside the unit
circle with multiple zeros repeated. This follows from the properties of analytic functions since
the presence of an infinite number of zeros within the unit circle would imply the existence of
an accumulation point, which would force f to be identically zero within the unit circle, which
would contradict the assumption f(0) = 1. Thus Jensen’s formula can be applied to write

1
2π

∫ π

−π
ln |f(ejω)| dω =

m̃∑
i=1

ln
1
|αi|

. (12)

The zeros of f(z) inside the unit circle are the reciprocals of the zeros of A(z) outside the unit
circle, that is, m̃ = m and αi = 1/ρi, i = 1, . . . ,m. Furthermore, as discussed in [1] and [9],
Jensen’s formula remains true for zeros on the unit circle as well as within the unit circle and
hence, for any autoregressive process described by A(z) satisfying (2) and a0 = 1, it results in

RAR(θ) = RK(θ) +
m∑
k=1

ln |ρk|, (13)

where ρ1, · · · , ρm are the zeros of A(z) outside or on the unit circle. This formula agrees
with the rate-distortion function of (10) in the finite-order autoregressive case and generalizes
that result to the infinite order case with absolutely summable coefficients. Thus the results of
[7] demonstrate that the Kolmogorov formula may fail for nonstationary sources, not that the
autoregressive formula is incorrect. The two formulas agree for stationary sources and for the
nonstationary Wiener process and more generally for all nonstationary autoregressive processes
satisfying (7). Note that (13) has the interpretation that the correction term needed for the
Kolmogorov formula in the nonstationary case is the sum of the log moduli of the unstable
poles.

3 Asymptotic eigenvalue distributions

Although the rate-distortion functions of [4] and [7] are equivalent, their derivations apply the
classic asymptotic eigenvalue distribution theorem for Toeplitz matrices in two different ways.
The classic form can be described as follows. Given a discrete-time Fourier transform pair

f(ω) =
∞∑

k=−∞
tke
−jkω;ω ∈ [−π, π) (14)

tk =
1

2π

∫ π

−π
f(ω)ejkω dω; k = . . . ,−1, 0, 1, . . . (15)
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let Tn = Tn(f(ω)) ∆= {tk−`; k, ` = 0, 1, . . . , n − 1} be the corresponding Toeplitz matrix with
eigenvalues τn,k, k = 0, 1, . . . , n − 1. Denote the essential infimum and supremum of f by mf

and Mf , respectively. Then the classical theorem (see, e.g., Section 7.4 of [6] or the tutorial [5])
states that, if F is a continuous function on [mf ,Mf ], then

lim
n→∞

1
n

n−1∑
k=0

F (τn,k) =
1

2π

∫ π

−π
F [f(ω)] dω. (16)

The theorem extends to matrices which are not necessarily Toeplitz matrices. Given an n× n
matrix B = {bk,`; k, ` = 0, 1, . . . , n − 1} with eigenvalues λk, k = 0, 1, . . . , n − 1, let its strong
and weak norms be, respectively,

‖B‖ = max
k
|λk| and |B| =

 1
n

∑
k,`

|Bk,`|2


1
2

It is known (see the above reference) that, if a sequence of n × n matrices Bn is uniformly
bounded in both norms and satisfies

lim
n→∞

|Bn − Tn| = 0 (17)

then (16) will also hold for the eigenvalues of Bn; that is, if λn,k, k = 0, 1, . . . , n − 1 are the
eigenvalues of Bn, then (16) holds with τn,k replaced by λn,k. Such a sequence of matrices Bn
is said to be asymptotically equivalent to the sequence Tn. Two sequences of eigenvalues τn,k
and λn,k constrained to a common finite region [m,M ] are said to be asymptotically equally
distributed or to have equal asymptotic distributions if the equality

lim
n→∞

1
n

n−1∑
k=0

F (τn,k) = lim
n→∞

1
n

n−1∑
k=0

F (λn,k)

holds for all F continuous on [m,M ]. Thus sequences of asymptotically equivalent matrices
will have asymptotically equally distributed eigenvalues.

The classic Kolmogorov result for a stationary autoregressive Gaussian process follows from
his finite order results by taking Bn and λn,k as the nth order covariance matrix of the Gaus-
sian process and the corresponding eigenvalues. The limit is computed by demonstrating the
asymptotic equivalence of Bn and a Toeplitz approximation Tn with eigenvalues τn,k and using
the asymptotic equivalence of eigenvalues to compute the limit

D(θ) = lim
n→∞

1
n

n−1∑
k=0

min(θ, τn,k) (18)

RK(θ) = lim
n→∞

1
n

n−1∑
k=0

max
(

0,
1
2

ln
τn,k
θ

)
. (19)

The autoregressive result instead focuses on the inverse covariance. The difference equation
defining an autoregressive process can be written in vector form as

AnX
n = Zn.
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where the lower triangular Toeplitz matrix An is given by

An =



1 0 · · · 0
a1 1 0 · · · 0

a1 1
. . .

...
...

. . . . . .
an−2 · · · 0
an−1 · · · a1 1


. (20)

The inverse covariance
Φn = σ−2A∗nAn (21)

is then asymptotically equivalent to the Toeplitz matrix Tn(g(ω)/σ2) determined from the
inverse Fourier transform of g(ω)/σ2 with g(ω) in (6) and hence the Toeplitz eigenvalue distri-
bution theorem can be applied with τn,k = 1/λn.k, where now the λn,k are the eigenvalues of
Ψn = σ−2A∗nAn.

As Hashimoto and Arimoto point out, in the nonstationary case direct application of the
asymptotic eigenvalue distribution theorem does not work in evaluating the limit of (19) because
of the behavior of the λn,k near zero. Furthermore, they state that in this case that “the eigen-
values of Ψn and Φn have distinct distributions unless the process is asymptotically stationary.”
Alternatively, the failure of the classic asymptotic eigenvalue theorem for sequences of Toeplitz
matrices to apply is a direct result of the fact that the required conditions of bounded eigenval-
ues of the autocorrelation matrix are violated for nonstationary autoregressive processes. This
difficulty is obvious from rewriting (19) as

R(θ) = lim
n→∞

1
n

n−1∑
k=0

max
(

0,
1
2

ln
1

λn,kθ

)
= lim

n→∞

1
n

n−1∑
k=0

G(λk,n) (22)

where

G(λ) = max
(

0,
1
2

ln
1
λθ

)
(23)

is not continuous at λ = 0. Hashimoto and Arimoto circumvent this difficulty by the observation
that exactly the m smallest λn,k decrease exponentially as n increases while the remaining
λn,k are bounded from zero. Between those m smallest λn,k, the `th smallest one decreases
asymptotically as |ρ`|−2n, for ` = 1, 2, · · · , m, and the expression (9) follows.

The derivation of [4], however, avoided the above difficulty by deriving an equivalent form
to the Kolmogorov finite order formula (see (15b)–(17b) of [4]) :

1
n

n−1∑
k=0

max
(

0,
1
2

ln
1

λn,kθ

)
=

1
n

n−1∑
k=0

ln
[
max

(
σ2λn,k,

σ2

θ

)]
=

1
n

n−1∑
k=0

F (λn,k) (24)

where

F (λ) = ln
[
max

(
σ2λ,

σ2

θ

)]
(25)

is continuous at λ = 0 and hence the limit can be evaluated immediately by the classical
Toeplitz eigenvalue theorem. This yields an answer with a different functional form from the
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traditional Kolmogorov formula which is not contradicted by the example of [7] and which has
no problems with λn,k near 0.

The previously quoted statement in Hashimoto and Arimoto [7] that the asymptotic eigen-
value distributions of the matrices Φn = σ−2A∗nAn and Ψn = Tn(g(ω)/σ2) are distinct in the
nonstationary case where the essential infimum of g(ω) = 0 was based on the demonstrated
failure of the limit of (22) to equal RK(θ) in this case. This failure does not demonstrate that
Φn and Ψn are not asymptotically equivalent in the sense of being bounded and satisfying
(17), however, since the G(λ) of (23) is not continuous at λ = 0 and hence does not provide
a counterexample to the implications of asymptotically equivalent eigenvalue distributions. In
fact, it is shown in [4] that the two sequences of matrices are asymptotically equivalent and
therefore have the same asymptotic eigenvalue distributions and hence the autoregressive form
of the rate-distortion function follows by direct application of the asymptotic equivalence and
the classical Toeplitz asymptotic eigenvalue distribution theorem.

What is true in the nonstationary case is that the asymptotic distributions of the eigenvalues
τn,k of the autocorrelation matrices Φ−1

n and those of Tn(σ2/g) are not the same for the simple
reason that these eigenvalue sequences are not bounded. As a result the usual Kolmogorov
formulation, which is in terms of the eigenvalues of the correlation matrices Φ−1

n , does not
yield a solution by direct application of the Toeplitz asymptotic eigenvalue theorem. The
reformulation in terms of the inverse correlation matrix eigenvalues provides an example of
where such a limit can be evaluated by taking advantage of the asymptotic equivalence of the
corresponding inverse matrices.

4 Conclusion

The rate-distortion formulas of [4] and [7] are consistent and the results of the latter provide
no evidence of invalidity of the former. The two papers provide alternative characterizations
of the same quantity which are related through the Jacobi-Jensen formula. The second paper
provided the first detailed example where the Kolmogorov and autoregressive formulas for the
rate-distortion function differed by a nonzero amount. Contrary to the statement in [7], the
asymptotic sequence eigenvalue distributions of the sequences of matrices Φn = σ−2A∗nAn and
Ψn = Tn(g(ω)/σ2) are identical in both the stationary and nonstationary cases, but the cor-
responding inverses have asymptotically equally distributed eigenvalues only in the stationary
case.
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