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Introduction

X a k-dimensional real random vector with a distribution

Pf , absolutely continuous wrt Lebesgue measure V ⇔ pdf

f = dPf/dV for which

Pr(X ∈ F ) =

∫

F

f(x) dV (x)
∆
=

∫

F

f(x) dx

Volume(F ) = V (F ) =

∫

F

dx

Differential entropy h(f)
∆
= −

∫

f(x) log f(x) dx exists and

is finite.

log may be base 2 or e
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Vector quantizer Q:

• encoder α : <k → I (index set)

S = {Si = {x : α(x) = i}; i ∈ I} (encoder partition)

pi = Pf(Si) > 0 (useful technical condition)

• decoder β : I → <k

reproduction codebook C = {β(i); i ∈ I}.

assume codevectors are all distinct.

• length function ` in nats satisfies the Kraft inequality

∑

i

e−`(i) ≤ 1 (admissible) (1)
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Length ` is instantaneous rate

If all `(i) equal ⇒ fixed rate or fixed length code. Then

`(i) = log ||C||

Otherwise variable rate or variable length code.

Idea underlying `: uniquely decodable lossless code for

indices.

Average rate (length) Rf(Q) =
∑

i pi`(i)

Quantizer entropy: Hf(Q) = Hf(α) = −
∑

i pi ln pi,
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For admissible `, divergence inequality ⇒

Rf(Q) ≥ Hf(Q) with equality iff `(i) = − ln pi.
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Distortion measure d(x, x̂) ≥ 0,

Here focus on squared error: d(x, x̂) = ||x − x̂||2

Average distortion Df(Q) = Ed(X,β(α(X))).

Most ideas generalize to weighted quadratic distortion

measures such as

d(x, x̂) = (x− x̂)tBx(x− x̂) and d(x, x̂) = (x− x̂)tBx̂(x− x̂),

where Bx or Bx̂ is positive definite, and many others.

Optimal Performance: (operational distortion-rate function)

δf(R) = inf
Q:Rf(Q)≤R

Df(Q)
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Theories of Quantization

Three classical approaches:

Shannon Rate Distortion Theory (Shannon, Gallager)

Shannon distortion-rate function D(R) provides lower bound

to δf(R), achievable in asymptopia of large dimension k and

fixed rate R under suitable stationarity assumptions

High rate theory (Bennett, Lloyd, Zador, Gersho)

Optimal performance in asymptopia of fixed dimension k and

large rate R.

Nonasymptotic (Exact) results (Shannon, Steinhaus, Lloyd)

Necessary conditions for optimal codes (⇒ iterative design

algorithms).
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Shannon theory well known and highly developed.

High rate theory less well known in information theory

and signal processing theory, but classic results ubiquitous in

practice e.g.,

• 6 dB/bit quantization approximations,

• fact that uniform quantization + optimal lossless coding ≈

optimal for memoryless sources, “quarter bit” off [Gish and

Pierce (1968)]

High rate theory took much longer to be made rigorous, still

many unproved folk theorems.

Here focus on high rate theory + relevant exact results
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Aside: There is also a body of work considering

asymptotically large k and R together (e.g., consistency of

Shannon and Zador bounds; high rate and high dimension

optimality of lattice codes [Zamir and Feder, 1996]

Goal: Survey old and new results, conjectures, some open

problems.
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Variations of quantization, e.g., [Gruber (2002)]

• Fejes Tóth’s minimum sums of moments:

What partition {Si} minimizes
∑

i E[||X −E(X|X ∈ Si)||
2]?

• best approximation of probability measures by discrete

measures and support sets of best approximating discrete

measures

• the minimum error of numerical integration formulas for

classes of Hölder continuous functions and optimum sets of

nodes

• best volume approximation of convex bodies by circumscribed

convex polytopes and the form of best approximating

polytopes
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• theories of k-means and of “principal points” in statistics
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Zador/Gersho High Rate Approximations

As rate R goes to ∞

Fixed rate:

δk(R) ∼= ak||f ||k/k+22
−2R/k, (2)

where ak is a universal constant depending only on k and

||f ||k/k+2 =

(
∫

f(x)k/k+2 dx

)
k+2

k

Variable rate:

δk(R) ∼= bk2
−2

k[R−h(f)], (3)

where bk is a universal constant depending only on k.
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Zador’s original proofs highly technical and limited generality.

Also contained several errors, some serious.

Gersho developed heuristic approach and popularized results.

Gersho’s Conjecture High rate results achieved by quantizers

that locally resemble lattice or tessellating quantizers.

Conjecture leads to intuitive “proofs,” but neither conjecture

nor many of its implications have been proved.

If conjecture true, then ak = bk, all k.

Currently only b1 = a1 = 1/12 and a2 known, and limits as

k → ∞ known. There are many bounds.
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Gersho’s proof (like Lloyd’s and, implicitly, Bennett’s) based

on idea of quantizer point density λ(x) of a sequence of

quantizers Qn: for every measurable set F :

# of quantizer reproduction points of Qn ∈ F

Total # of quantizer reproduction points of Qn

→
n → ∞

∫

F

λ(x) dx
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Lagrangian Approach:

Necessary conditions (and design algorithms) long known for

fixed rate codes (Shannon, Lloyd). Similar results for variable

rate require Lagrangian approach.

Berger (1972), Farvardin & Modestino (1984) for k = 1,

Chou et al. (1989) for general case.

Lagrangian methods for Shannon approach, i.e., for

evaluating rate-distortion functions, older [Shannon, Gallager]
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For each value of a Lagrangian multiplier λ > 0 define a

Lagrangian distortion

ρλ(x, i) = d(x, β(i)) + λ`(i)

with average distortion

ρ(f, λ,Q) = Efρλ(X,α(X)) = Df(Q) + λRf(Q)

Optimal performance ρ(f, λ) = inf
Q: admissible `

ρ(f, λ,Q)

Each λ ⇒ (D,R) pair on the operational distortion-rate

function curve.
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Small λ corresponds to high rate (small distortion) and large

λ corresponds to small rate (large distortion).

As sweep λ from 0 to ∞, traces convex hull of operational

distortion-rate function

As λ → ∞, put all cost on rate. Optimal code tends to zero

rate code, suffer whatever distortion is necessary.

As λ → 0, cost concentrates on distortion. If distribution

were discrete, optimal code would be lossless, zero distortion

with rate H(f).

High rate theory considers distortion-rate tradeoff as λ → 0

for continuous distributions.
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Lloyd Quantizer Optimality Properties:

Q = (α, β, `)

Encoder For a given β, `, optimal encoder is the

minimum Lagrangian distortion mapping

α(x) = argmin
i

(d(x, β(i)) + λ`(i))

Decoder For a given α, ` the optimal decoder is the

Lloyd centroid β(i) = argmin
y

E(d(X, y)|α(X) = i)

Length Function For a given α, β, optimal length function is

the
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Shannon codelength `(i) = − ln pi, where pi
∆
= PX(α(X) =

i):

E`(α(X)) = H(α(X)) = −
∑

i

pi ln pi (ECVQ)
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Lloyd Algorithm

⇒ Clustering algorithm: Given an initial code, improve by

iteratively optimizing each component for the others.

For fixed rate: Lloyd (1957), Steinhaus (1956), k-means,

MacQueen (1967)

For variable rate: Chou et al. (1989)

Early example of “grouped coordinate descent algorithm”

Descent algorithm, so converges.

Can initialize in many ways, including splitting to grow

codebook.

20



Precise Statement of Zador’s High Rate

Results

Zador’s fixed rate results corrected and generalized by

Bucklew and Wise (1982) and Graf and Luschgy (2000). Basic

result is

Theorem. If E(||X||2+ε) < ∞ for some ε > 0, then

lim
R→∞

δf(R)2R/k = ak||f ||k/k+2

Zador’s variable rate results only recently repaired and

generalized.
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The traditional form of Zador and Gersho was that under

certain conditions,

lim
R→∞

2
2
kRδf(R) = b(2, k)2

2
kh(f) (4)

but no rigorous proof of this result existed until recently.
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Theorem. [Gray, Linder, Li (2002)] Assume that f is

absolutely continuous wrt Lebesgue measure, that

h(f) is finite, and for some ∆ a partition

into cubes of side ∆ has finite entropy, then

lim
λ→0

(

inf
Q

(

Ef [d(X,β(α(X)))]

λ
+ Ef`(α(X))

)

+
k

2
ln λ

)

= h(f)+θk

(5)

where

θk = θ([0, 1)k)
∆
= inf

λ>0

(

ρ(u1, λ)

λ
+

k

2
lnλ

)

(6)

and u1 is the uniform pdf on the k-dimensional unit cube
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Analogous to the approximate interpretation of the

traditional Zador result, the interpretation here is that for

small λ,

ρ(f, λ) ≈ λθk + λh(f) −
k

2
λ ln λ.
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The following relates the traditional and Lagrangian forms

of Zador’s results for variable rate vector quantization.

Lemma 1. The conclusions of Theorem 1 hold under the

stated conditions if and only if the limit of (4) exists, in which

case

θk =
k

2
ln

2e

k
bk. (7)

Thus in particular Zador’s formula holds under the conditions

given in the theorem.

As an example of the conditions, the divergence inequality

⇒ if the random vector X has a finite second moment, then

Hf(Q1) < ∞ and h(f) < ∞. Thus the theorem holds for

pdfs with finite second moment and if h(f) > −∞, e.g., for

Gaussian pdfs.
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Proof of theorem:

• Uniform pdfs on cubes

• Piecewise constant pdfs on cubes

• General distributions on the unit cube

• General distributions.

Does not use idea of quantizer point density.

Does make use of “composite codes,” quantizers designed

for disjoint mixtures by designing separate quantizers for each

piece and then using union codebook.
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Asymptotically Optimal Quantizers:

The theorem guarantees that for a source with pdf f , there

is an asymptotically optimal sequence of quantizers: for any

decreasing sequence λn converging to 0 there exists a sequence

of quantizers Qn = (αn, βn, `n) such that

lim
n→∞

((

E[d(X,βn(αn(X)))]

λn
+ E`n(αn(X))

)

+
k

2
lnλn

)

= h(f)+θk.

Note: Evaluation of bk can be accomplished by finding

asymptotically optimal quantizers for any pdf, e.g., uniform

pdf on a cube.
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Worst Cases

If pdf has finite support Ω, then worst case is uniform pdf

on Ω:

f(x) =
1

V (Ω)
, x ∈ Ω , h(f) = log V (Ω)

If know mean µ = EX and covariance K = E[(X−µ)(X−

µ)t] of the source, then worst case is Gaussian pdf:

f(x) = N (x, µ,K) =
1

(2π)
k
2 |K|

1
2

exp

(

−
1

2
(x − µ)tK−1(x − µ)

)

h(f) =
1

2
ln(2πe)k|K|,
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High rate analog to Sakrison’s Shannon rate-distortion result

What if we design asymptotically optimal sequence of

quantizers Qn for pdf g, but apply it to f? ⇒ mismatch
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Mismatch

Optimize a code for a distribution Pg on <k, but apply the

code to a distribution Pf

Classic example:

• Lossless source code

• Distributions are discrete, described by pmfs g and f .

Uniquely decodable lossless code must have a collection of

codeword lengths `(i) in nats that satisfies the Kraft inequality

(1)
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If a discrete source has pmf g = {gi} with Shannon entropy

H(g) = −
∑

i

gi ln gi,

divergence inequality ⇒ If ` admissible,

Eg` =
∑

i

gi`(i) ≥ H(g), with equality if

`(i) = − ln pi (Ignore constraint of integer lengths)

Apply optimal code for pmf g instead to pmf f :

Ef` =
∑

i

`(i)fi = −
∑

i

fi ln gi

= H(f) +
∑

i

fi ln
fi

gi

∆
= H(f) + I(f ||g),
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I(f ||g) is the relative entropy or Kullback-Leibler divergence

Extend mismatch idea to fixed dimension high rate vector

quantization.

For fixed rate codes, done by Bucklew (1984)

Theorem. Suppose that Qn is asymptotically optimal for a

pdf g and that f is pdf satisfying an horrendously complicated

condition given by Bucklew, the only simple version of which is

that f/g is bounded. Then

lim
R→∞

2R/kDf(QR) = ak

(
∫

f(x)

g(x)2/2+k
dx

)(
∫

g(x)k/k+2 dx

)2/k
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Intuition: This is the result that follows from Gersho’s

conjecture using approximations to integrals and a quantizer

point density.
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In fact, as part of the proof, Bucklew demonstrated the

existence of a quantizer point density.

Variable rate case:

Theorem. The mismatch theorem:[Gray, Linder (2002)]

Suppose that Qn is asymptotically optimal for λn → 0 for

a pdf g and that f is pdf for which f/g is bounded, then

lim
n→∞

Df(Qn)

λn
+Ef`n(αn(X))+

k

2
ln λn = θk−

∫

dx f(x) ln g(x)

or, equivalently,
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lim
n→∞

Df(Qn)

λn
+ Ef`n(αn(X)) +

k

2
lnλn − h(f) = θk + I(f ||g),

where

I(f ||g) =

∫

dxf(x) ln
f(x)

g(x)

is the relative entropy or Kullback-Leibler divergence between

f and g.
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The mismatch theorem implies that if Qn asymptotically

optimal for g, then when applied to f it will yield the

asymptotically optimal performance for f plus I(f ||g).

Also robust in the sense of Sakrison’s and Lapidoth’s

Shannon rate distortion results

For Gaussian (or uniform) g, I(f ||g) = h(g) − h(f) and

hence

Df(QR) ≈ bk2
−(2/k)[R−h(g)] (8)

which is the best asymptotic performance at rate R for g.

So indeed robust quantizers in the Lapidoth sense
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Mismatch as Distortion between pdfs

The relative entropy quantifies the high rate mismatch from

optimal performance of a quantizer optimized for a “model”

pdf and then applied to a “true”

⇒ adds motivation for I(f ||g) as a “distance” or “distortion

measure” on pdfs in order to “quantize” the space of pdf’s to

fit models to observed data.
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High Rate Variable Rate Universal Coding

Corollary 1. [Gray and Linder (2002)] Suppose that Qn =

(αn, βn, `n) is a sequence of variable rate quantizers that

is asymptotically optimal for a pdf g for some decreasing

sequence λn → 0. Assume also that f is a pdf that meets the

condition of the mismatch theorem. Define `′n to be the optimal

length function for αn and Pf . Then Q′
n = (αn, βn, `′n) is

asymptotically optimal for Pf , i.e., limn→∞ θ(f, λn, Q′
n) = θk.

The length function of the quantizer matched to the true

source, but encoder not optimized for the new length function.

Thus there remains a mismatch in the code sequence, which

nonetheless is asymptotically optimal!
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Shortcoming

Constraint that f/g be bounded too strong, e.g., eliminates

Gaussian g and a Laplacian f and two Gaussians.

Gersho’s conjecture suggests only need I(f ||g) < ∞

Can show directly for some cases violating bounded

condition, e.g., for k = 1 a sequence of uniform quantizers

with optimal lossless codes for g work for any f for which

I(f ||g) < ∞
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Some Open Questions

• Does quantizer point density function exist for variable length

case?

• If so, is it uniform as Gersho’s conjecture and known k = 1

case implies?

• Does ak = bk for k > 1?

• Does Gersho’s conjecture hold?

• Can the mismatch theorem be generalized to unbounded f/g?
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• Only case optimal high rate variable rate quantizers known

is for k = 1 where uniform quantizers are best. Common

conjecture is lattice or tessellating quantizers asymptotically

optimal (implied by Gersho’s conjecture). Is this conjecture

true? (Known asymptotically true as k → ∞ [Zamir and

Feder (1996)])

• There may be other asymptotically optimal quantizers,

mismatch theorem holds for any such sequence. Some are

better than others, e.g., know for pdfs with bounded support

or subGaussian tails, asymptotically optimal quantizers need

only a finite number of quantization points.
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• Do the results hold for more general distortions, especially

those of the form

d(x, y) = (x − y)′Bx(x − y)?

Results of Gardner et al., Li et al. using Gersho’s conjecture

and similar results for Shannon rate-distortion functions of

Linder, Zamir, and Zeger suggest the answer is yes.

• Clustering pdfs with relative entropy distortion, applications

to Gauss mixture modeling, compression, and classification.

(Aiyer, Young, Pyun)

• Nonrigorous approach of Gersho yields simpler “proofs.” Can

the highly technical rigorous proofs be made more intuitive?
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