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L. TNTRODUCTTON

. ) M

Since any system is in fact finite, the problem of leaming with finite momo-
rv is of great importance. The real problen is to formul; ite . model which is
both applicable to the real world and amenable to theoretical study.

In thix paper we will he concerned with several models and, not’ unexpee-
tedly, thore'is an inverse relation between theoretical simpliéity’ and real
world applicability. Howover thess models are all related and are outgrowths
of one advunced by Hellman and Cover |1, 2, 3]. This model was motivated
by earlier works [4, 5] but was the first (o vield an optimal solution.

We arc given a sequence of independent, identically distributed observa-
tions {X, }n_, where each observation X is drawn according to the pro-
bability measure P. There are two hvpotheses H, and H, with a priori
probabilities 7, and a1, = 1 — 71, where under H,, P = P, for ¢ == 0.1.
We assume that 7y, 1, P, and P, are kt)b\»’t\ and that Py s~ P; almost
evervwhere.

Let d, € {I,. H,)} deuote the decision made at time ». If d,, is allo“ ed to
depend on X,. X, ..., X, then a standard likelihood ratio test vields a pro-
bability of error tending exponentmll_v to zero in the sample size n. However
the likelihood ratio is real valued and to store it exactly requires infinito
memory. We could try to estimate the degradation introduced in this method
by the use of finitc memory, but p1 efer to take the more fundamental view-
point discussed below.

A finite memory algorithm mnslstq of the sextuple K = (X, D. 8. d. £, T).
% is the space of allowable observations (i.e. X, € %), Dis the space of allow-
able decisions (i.e. d,, 6 D = {H, I} in our O\mnplc) 8 is the finite state
space or memory, d: 8 -~ I i the decision function, [: $x%X - 8§ is the
state transition fumtmn and T, €& is the initial state of memory. The
interpretation is that at time zero jemory is in state T, At time one X,
iy observed causing a transition to state 7', = f(7,, X,) and a decision d) =
= d(7')). At time two X. is observed m.nsmg a transition to state 7', = f(7T',,
X.,) and a decision d,y = (1%) and, in general,

Tu == /(Tn—d-‘ \’) € 8

d,=d(1,) €. (1.1)
We measure the size of memory by the number of states in 8. That is memory
is of size m if 8 = {s),s5,. ....5,}. We will prefer to represent § by {1, 2,

.,m} for notational convenience.
Letting e, equal 0 or 1 accordingly as d, = ¥, or d, -~ H, where I, .
denotes the true hvpothesis, define

P R) = Fe, (1.2)
and
. 1 N,
Pae) = ki o NP e1)- (1.3)
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Fuggher, fora given problemn (i.c., 7y, 71y, P, D)), memory size m andsamplo
sizé n < oc deline

P*m, 2y = inf P, (). (1.4)
14,7,

The value of P*(iz, ) depends on the class of algorithms considered. For
example, should randomized mappings f and d be allowed? At first it would
seem that since randomized mappings tend to add noise, their use would
only increase error probability. However this is not so in general, and we
will explore the differences between deterministic algorithims and randomized
alrorithms. Of course, when a randomized algorithm is used, the randomiza-
tion must be independent of the data to avoid hidden memory.

The infimum in (1.4) will be taken over all m-state algorithms, randomized
and detcrministic. Therefore we define

Phm, n) == inf P (oA) (1.5,
WSy by
whore in (1.53) the infimum is over the class of deterministic automata. Clear-
1v for all problems, m and

P*(m, n) < P3im,n) . (1.6)

In Section 2 we will reviow the work of Hellman and Cover [1, 3], finding
oxplicit expressions for P*(m, ~o). We will see that for large memory sizes
P*¥(m, ~) goes to zero exponentially in m. This is a dual result to that for
infinite memory but tinite sample size. There, for large sample sizes, probabi-
litv of error goes to zero exponentially in the sample size.

In Section 3 we will cxplore tho ditferences between randomized and
deterministic automata when n = co. l'ollowing Hellman and Cover [6)
we will find that there exist problems for which randoniized rules are arbit-
rarily better than deterministie rules. However we will then see [7] that
deterministic rules are asymptotically optimal. These two statements seem
contradictory but, in fact, are not when precisely stated.

The first statement becomes: For any m <7 oo and 4 > 0 there exists o
problem such that P*(2, oc) < 8, while P4(m, ) > 1/2 ~ 6.

The second statement becomes: For any problem there exists a b < co
such that for all m, P§(m2%, oc) < P*(m, co). That i3, adding b bits to me-
mory makes deterministic rules competitive with randomized rules.

Then in Section 4 we review recent work of Flower {8] and I'reedman [9]
on the behaviour of P*(in, n) as a function of sample size n.

2. BEHAVIOUR OF P*(1m,co)
In [1] Hellman and Cover show that

I z.ym=1 1
P, =) = min gl:l—;’;—,';)fl — Ty, nl} 2.1

where y is a measure of the distance between Hj and H,. When @y = a, =
== 1/2 we have

1

P*(nl, N) = T])ﬁ—. .
¥ +1

(2.2)

The parameter ; is defined by

y=1II>1 (2.3)



219

wihere
! = sup y Lol d) (2.4).
P (A)
L = l\f O(A) (2.5)
1

and the &n]ncmum and infimum are over all measurable sets A such that.

Py(A) 4 P(4) > 0. That is, 1is the essential Rupremum on the likelihood

ratio I(X). while 7 i3 the essential infimum. Clearly 2 > 1, { <1l and y > L.
Since y > 1 we see that

P*(n, co0) ~ 1M . (2.6)

“where r = p~12 . 1. Thus P*(m, oo) goes to zero cxponentially in m.
The forn of the optimal machine is of interest and is derived in [1]. Here
we will merely examine its strueture. Let

We=a {or €X ) > [V + €17} (2.7)

and

== {r €L ) <14 €} (2.8)

"Thus for small £, %, and 3 have likelihood ratios ¢lose to 7 and I respectively.
Furthermore 17X ,) 0 Py(8,) > 0 by the definitions of I and 1.

('(msia]nr the machine which transits from state i to i 4- 1if X ¢ I, and
A<m-- Lfromitoi - 1ifX €J,and i > 2; and stays in the same state
otherwise. 'I his machine changc s state only on a subsequence of high infor-

mation observations, thereby making maximal use of its limited memory
to store information. However it is scen that states 1 and m are the states
in which we are most certain of our decisions. Therefore once in an end stato
we would like the machine to stay there for a lou;, time hefore leaving.
Using randomization we can effect this,

i state 1and X €/, move to state 2 with smadl probability 8 (and
stay in state 1 with probability 1 - d). i in state w and X € &, move to
statean Twith probability £0 (and stay in state s with probability 1 — 1.d)
Leave all other transitions as they were.

The purpose of not fixing £ == 1 i to allow asymmetries in the st ructure of”
the machine to compensate for asvmmetries in the statisties (e.g., 7y + @,
cte.). For symmetric problems the optimal value is & = 1.

In {17 it is shown that with & properly ehosen, #s £, 6 — 0, P, (A) -~
= PP%(m, ~ ) so that this i an optimal eluss of algorithms. The simple strue-
ture of this class is pleasing, and somewhat unexpected, since no constraints
were placed on the “complexity™ of the mapping /.

Note that randomization is necessary to approach PHm, o) if X is a
flmlc wp.\m- I U is continuous, randomization is not. necessary (i.e.. P¥(m,

~) = %, -\)) since then we can abtain low probability deterministic
tr;\nsiti(ms.

3 RANDOMIZANTTION

We have just noted that rundomization is not necessary if € is a conti- -
nuous space. Hero weo exumine the differences between randomized and .
~deterministic rales when % s discrete.

First let us show that randomized rules are arbitrarily better in tho -
senso that for any m < ~ nnri 0 > 0 there exists u problem such that
PH2, ) <6 while, P3(m, ~) > 1/2 -~ 4. Not. surprisingly it suflices to

consider Bernoudli distributiony w here Gt == {0, 1} since these are tho anti- -
thesis of cantinvous distributions.
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Let py = Pr(X = VM) and py= Pr(X = 1[H), and g, =1 — p,,
g V= p IE o py == 3[4 and p, = 1[+ then J(X = 1) = po/p, = 3 and
H(X = 0)= 13.Thus =3, /=13 and y = 9. If 7, = 7, = 1/2 we have,
from (8), that P*(3, ~) == 1/82. )

Hpy =1 107andp =+ 1 W~"wehave! = pfp, > 1,1 = qilq, =
= Fand v > 10, Thus P%(3, ~) = 1/101.The optimal five state random-
ized machine actually has a lower probability of error for this problem
than when p, = 3[4, p, = 1/4. It is fairlv obvious that a five state determin-
istic machine cannot achieve an error probability much below 1/2. Thus
P53, ~) -2 P53, ). Wo can make the diserepancy even worse. If we
nke py =1 - 107" qand leave p, =1 — 1079 then p ~ 10! and P*
(3, o) ~z 10720 while P5(5, o) is still close to 1/2. On the other hand if we
keep tho ratio g,fq, fixed but muke p, and p, even closer to 1 this does not
affect ¢ and hence P#(m., oo}, but does cause P3(5, ~o) to be even closer to
12 (c.g., pg == 10720, p, = 1 — 10~"). By combining these two eftects wo
can, for any i 7 ~, make p arbitrarily large (aud thus P*(2, co) arbitrarily
small), and vet keep £3(m, o) arbitrarily closo to 1/2.

Now let ug turn to the other statement: IFor any problem, there exists a
b < o such that, for all wi, P%m2", oo) << P*(m, o). That is, deterministie
rules lose at most b bits. The basic idea [7] is to demonstrate a class of deter-

ministic machines which hag error probability go to zero exponentially in
m, the number of states. Say P(mn) ~'s™ for some ¢ < 1. Since P*(im, co) ~
~ r” where r = =12 < 1 we know that s > ». However there must exist
k < oo such that s*¥ < r. Setting b = (log,k]" vields the desired result.

Since the solution to the Bernoulli problem (i.e., ¥ = {0, 1}) is easily
extended to the general problem we only consider it in this review. If
Po > 1/2 > p, then the algorithm which moves up on state when X = 1
(unless in state m), down one state when X = 1 (unless in state 1), and
decides H, in states 1 >m/2 and H, in states ¢ < m/2 has probability of
error () which goes to zero exponentially in m. That is P(m) ~ sm where
3 = max{(qo/pa)'%, (pif)'1%}.

f po>p >1/2 (or 1/2 > p, >p,) then the above machine does not
have P’(m) ~ s™ for any s < 1. This is because under both hypotheses there
is a drift to higher (respectively lower) numbered states. Since the problems
P > > 1/2 and 12 > p, > p, are equivalent by interchanging the roles
of X = 0 and X = 1, we consider only the former.

We can always find integers N, > N,. such that (pl/gl) >1 and
(p{Jg¥) < 1. "Thus a machine which moves up one state whenever a block
of N, observations consists of all 1’s and down one state whenever the first
N, observations of the block are all 0’s, has a drift toward higher numbered
states under /{; and a drift toward lower numbered states under H,. If such

a machine were to decide I, in states 3+ > m/2 and H, in states ¢ < m/2 it
would have P(m) ~ sm where s = max{(ghs/pi)2, (pihlgd)'?} < 1. Of
-course this machines requires a state transition function f which maps
SXNQAM to §, violating our definition for an m-state, finite memory decision
rule. However it is possible to implement such a rule using a finite memory
rule with at most (2% — 1) m states. (Essentially construct & machine with
m super-states each comprised of 2M —— 1 regular states.) Thus P(m) ~
~ | SMET =D which still has the desired form.

"The extension of these results to non-Bernoulli problems is straightfor-
ward since we ean alwavs quantize the observation space more coarsely.
FFhe extension to more than two hypotheses is also not too difficult {7].

iHoros [10] has also examined the differences between randomized and-
deterministic machines. He expands the decision space D to {Hy, H\, P}
whore d,, = @ indicates that no decision is made. If such decisions incur no
cost, ho finds that Py(m, ov) = £*(m, o) for symmetric problems (i.e.,
k=1 is optimal).
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4. FINTTE SAMPLE SIZR

Allanalysig up to now has dealt with infinite samplo sizes. The importance
of the finite sample size problem is evident, but one can no longer use ecui-
librinin conditions, making analvsis rather diflieult.

Flower |8] has investigited the symmetrie Bernoalli problem (i.e., p, =
=1 - p, and 7y =7 = 1/2) for finite sample sizes. Using a computer
search he has found that the optimal rule moves at most one state per trans-
ition. 1t X == 1 (or X = 0) the transition is to the next higher (or lower)
numbered state. or to the same state. The probahility of such transitions is
1 it the move is away from the middle of the machine, but is strictly less
than one it the move is toward the middle of the machine und the sample
size -, Experimentally it was found that P*(m, n) -~ P*(m, o)
appronches zero approximately as /. Analysis indicates that the actual
form i3 (log »)in.

Freedman [9] has studied the special problem whero % is the real line,
Py =N+ L), Py =N(-11), 7g =7, = 1/2 and m = 2, For this Gaus-
sian problem 3 == ~ 20 that P*(2, ~) = 0. This wounld seem to indicate
that a two state memory is not better than an infinite memory. However
P#2.2)~exp[ 2|21Ina), whoreas P*(~, n) ~ exp[-an] where = > 0.
Thus tho difterenco between ni == 2 and m = oo is quite marked for finite
sample sizes.

5. DISCUSITON

It is seen that the theorv is very general when applied to randomized
algorithms and infinito sample sizes. Although deterministic algorithms are
not as ensily analyzed, their practical importance tempts us to exert additio-
nal effort. Similarly, finite sample size problems lack theoretical simplicity
hut not practical applications. ,

Future work will thuy probably continue to pursue these two lines of
research. In addition it may be possible to take account of the complexity
of the functions f and d. As noted it is surprising that with no constraint
on complexity the optimal f and d are rather simple for the infinite sample,
randomized algorithm problem. It is thercfore possible that even when
a suitable such constraint is imposed, there will be little change in the
optimal algorithm.
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