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ceptually possible, a different  algorithm could perhaps  be.found for 
decoder scheduling which would show improvement over the 
FBQM-unscrembler  combination and still  satisfy the time-sequence 
constraint. 

VIII.  SUMMARY 

‘This concise paper  has. developed both a lower bound to the 
erasure  probability of a sequential decoder yith  an infinite buffer, 
and a memory-management strategy  (FBQM) for decoders with a 
finite buffer which performs close to  the  bound.  Both  the  erasure 
probability of FBQM  and  its lower bound exhibit  an exponential 
decrease with increasing decoder speed at   the  sequential-decoding 
computational cutoff point, where the erasure probability of a con- 
ventional  sequential decoder exhibits only inverse proportionality. 

The performance of this decoder has, been approximately evalu- 
ated using simulation.  A model for the  number of computations 
required to decode a fixed-length block of data was  also  developed 
to  aid  in  the  evaluation. ,Performance  curves for the  FBQM decoder 
have been presented which show that significant  performance im- 
provements are possible, Le., reduction by 0.5 dB in the  value of 
Eb/No required to achieve an  erasure  rate of 10-3 or a -reduction in 
erasure  rate  from loT2 to  by  the  addition of the  FBQM  strategy, 
with  all  other decoding parameters held constant. 

A brief discussion was also presented of the problems  associated 
with  the reordering into  strict,  time sequence of the  FBQM decoder 
output  data. It was  shown that even if this unscrambler must  share 
memory with  the  FBQM decoder it,self, a performance improvement 
equivalent  to a better  than threefold increase in buffer size is pos- 
sible, relative  to a strictly linear-management decoder. 
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On Uskg Natural  Redundancy for Error Detection 

MARTIN E. HELLMAN, MEMBER, IEEE 

Abstract-In this paper we develop a simple. encoder/decoder 
pair which utilizes the  natural  redundancy of a source for error de- 
tection. It does so with no loss in rate of transmission and with only 
minimal hiidware cost. 

I. INTRODUCTION 

Most natural sources of data possess redundancy. That is, not all 
sequences of characters are meaningful or “typical”  source outputs. 
Thus, if an error occurs in  the transmisaion of such data,  the error 
can frequently  be  detected or even corrected by use of the  natural 
redundancy. For example if the English  language message “I AM 
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NOT ABLE TO PROVIDE SUPPORT” is  transmitted  and received as “I 
AM NOT AGLE TO P R O V ~ D E  SUPPORT” then  the  two errors  (indicated 
by underbars) are  detectable (since there  are no English words AGLE 
and PROVSDE) and  are even  correctable with a slight  effort. 

There  are two  problems with relying on  natural  redundancy  in 
this  fashion.  First,  there  are  frequent error patterns which are  not 
correctable, and  there  are even a large  number which are  not de- 
tectable.  For example, if the above message is received as “I AM NOW 
ABLE TO PROVIDE SUPPORT,” not  only  is  the error  undetectable, but 
the meaning of the message is completely reversed. Since this un- 
detectable single-character error is much  more  likely to occur than 
the previously cited  correctable  double-character  error, the  natural 
redundancy is not well suited  for  error correction and  detection. A 
second problem relates  to  automated detection and correction of 
errors, A human can easily perform the above  detection and correc- 
tion  tasks if he is  familiar  with  English.  However, a machine would 
have  greater difficulty in performing this  task.  Either  it  must be 
given a large  number of rules  governing the spelling and grammar, 
or if it  relies on  spotting unallowable digrams (such as  vs  in  PROV~DE) 
it will miss many errors  (such as in A ~ L E  where all  digrams are 
possible when considered by themselves).  Similar remarks  apply 
to  the use of trigrams,  etc.  For sources other  than  natural languages 
it  may even be difficult for a human to  spot meaningless outputs. 

For these reasons redundant  bits  are often  added to a message 
for  the purpose of error  detection or error correction. These redundant 
bits  are added in a manner which makes  errors  easy to  detect  and/or 
correct by  automatic means. The  theory of error-correcting codes 
is well documented [1]-[3] and will not  be reviewed here. It will 
be sufficient to  note  that  the  addition of such redundant  bits results 
in a lowered rate of transmission of information. Sometimes to  
offset this loss an effort is  made to  remove  redundancy  from the 
source output. Such source coding, also known as data or bandwidth 
compression, is  usually difficult (i.e., expensive) to implement. In  
this paper we develop a simply  implemented  COder/DECoder  pair 
(a CODEC) which transforms  the  natural redundancy into a form 
which is  ideally  suited for error  control. This  paper  treats  the prob- 
lem of error  detection and  thereby  lays  the groundwork  for a later 
paper  on error correction [SI. 

11. ERROR  PROPAGATION 
Error propagation  is a problem with  many error-correcting codes 

[4], [5], particularly those which have feedback in  the decoder. In  
the extreme, a code which suffers from catastrophic error  propagation 
can  make an infinite number of decoding errors as a result of only a 
finite number of transmission  errors. Significant effort has been 
directed toward alleviating this problem. It may therefore seem 
counterproductive to now devote some effort toward designing codes 
with extreme  error  propagation. However, the solution to  that  task 
is  the crux of this paper. 

Suppose we represent the English  language message “I AM NOT 
ABLE TO PROVIDE SUPPORT” in  binary form using a 5-bit code with 
A = 00001, B = 00010, C = 00011, -.., Z = 11010, blank = 11011, 
period = 11100, comma = 11101, quote = 11110, question mark = 
11111, and  star = 00000. We then encode the  bit string, low-order 
bits first, with  the rate-one  convolutional encoder shown in Fig. 
1 (a). The inverse  operation or decoder is shown in  Fig. 1 (b) . Thus, if 
the channel introduces no errors, the message is decoded correctly. 
Now suppose a single-character  transmission  error  occurs and  it 
causes the T of NOT to be decoded as a W. The error propagates 
around  the feedback path  in  the decoder and causes many decoding 
errors. To be exact the decoded message is “I AM NOWJ.NXAAVWM, 
EWTY,ROVBGZ, RI.” The error  propagation  is quite severe and is 
essentially  perfect  in the following sense. 

Dejinition 
A rate-one binary CODEC is perfectly  error propagating if fol- 

lowing the first transmission error t,he decoder output, is a string 
of independent random  bits. It, is said to  be k-error propagating if 
the k decoded bits following t,he first  transmission  error are inde- 
pendent  and  random.  In  either case we require the system to be 
causal in that decoded bits preceding the first transmission error 
must be error free. 

The following t,heorem eshblishes  the ease wit,h which perfectjly 
error-propagating codes can be designed. 
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Fig. 1. Rate-one binary error-propagating encoder and decoder. 

Theorem 
A rate-one  binary-convolutional CODEC with constraint  length 

(number of stages in encoder shift register) Y is (Y - 1)-error 
propagating if the first stage of the encoder  is  included  in the  output 
sum  and  all  other  stages  are included  in the  output  sum with  prob- 
ability one-half independently of one another.  Equivalently, as 
shown  in Fig. 2 the encoding operat>ion is given by 

with { ~ i } i d - ~  being independent  random variables, each taking t’he 
values 0 and 1 with equal probability.  The decoding operatmion, also 
shown  in  Fig. 2 is given by 

By  convention,  for j 5 0, u; and i i  are  taken  to be 0. 
Proof: It is easily seen that preceding the first transmission error 

y k  =xk and therefore & = uk. Thus, if we let j o  denote  the t,ime of 
the first  transmission  error, uk = 6 k  for k < j o .  Now 

= 1 CB ujo. (3) 

Therefore, a decoding error  occurs a t  time j , .  
Letting 

d k  = uk @ &k (4) 

denote  the sequence of decoding errors, we have seen that dk = 0 
for k < j o  and d,, = 1. The decoding operation is linear  over the 
binary field, and therefore the response of the decoder to  the sequence 
yk = x k  @ e k  is the mod two sum of its response to r k  and  its response 
to ek. It follows that d k ,  the sequence of decoding errors, is t,he re- 
sponse of the decoder to ek, the sequence of transmission errors, and 
therefore 

dio+l ejo+l CB E a d j o + l - i  

”-1 

e-I 

= e;,+: CB a ~ .  ( 5 )  

Since al is as likely to  be 0 as it is to  be 1, and since it. is independent 
of elO+1, i t  follows that djo+l also takes on the values 0 and 1 with 
equal probability. Similarly,  since 
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Fig. 2. General, rate-one binary error-propagating CODEC. 

djo+z = eiO+2 CB a140+1 CB az ( 6 )  
and since az is independent of al, dj,+~ and ejo+2, i t  follows that dj0+2 
is random  and  independent of dfo+l. In  general,  for 1 5 E 5 v - 1, 

djO+k = ejO+k CB E atdjo+k-i 
”-1 

i=1  

k-1 

= ejo+r; CB E a d i 0 , k - i  CB a k  (7) 
i-1 

and since uk has  not been included  in  previous  sums, djo+n is random 
and  independent of all  previous decoding errors. 

Corollary: If N is the  length of the message to  be encoded and 
v = N then  the  CODEC is perfectly  error propagating. 

Although the previous arguments rely on the { U ~ } ~ - I V - ~  being 
chosen a t  random  it  is clear that certain choices are  to be avoided 
(e.g., all ai = O) ,  and  other choices to  be  favored (e.g., a,-l = 1, 
since if a,-l = 0 we could drop off t,he last  stage of the encoder and 
decoder shift regist,ers).  When N >> v there  are  probably ot’her 
heuristics which should be developed. For example, should the  taps 
be chosen to maximize the  number of transmission errors required 
to stop the error propagation?  The following argument shows that 
t,his is probably  not a good criterion. 

First  let us note  that a single  transmission error  propagates in- 
definitely  since a feedback shift regist>er (the  decoder)  cannot reach 
the all-zero state from a nonzero state  without  external  inputs.  Let 
us also note  that  there exist choices of the  taps which allow only 
one  additional .channel  error to  stop  the error propagalion. I n  par- 
ticular, if the  taps on the decoder  correspond to a maximal-length 
shift-register  sequence (MLSRS) [1]-[a], then two  transmission 
errors  separated  by 2 ~ - 1  - 1 error-free  transmissions will cause 
decoding errors  to occur  only during  the 2”-1 time  units preceding 
the second  transmission error.  This is because the v - 1 error bits 
in the decoder shift register start in state 100...000 after  the first 
transmission error.  During  the 2 v - l  following time  units  the decoder 
is  free running, and therefore  generates an MLSRS. Following the 
last of these 2 ~ - 1  - 1 error-free  transmissions the decoder  is  in state 
000.. -001 so that if no further transmission errors occurred the 
next  state of the decoder would be 100. - -000 which would be  the 
start of the second cycle of the  MLSRS. However, the second trans- 
mission error causes the decoder to go from  state 000. -.001 to  state 
000. * -000 instead.  Error  propagation  has ceased. 

If v = 20 the finite error  propagation caused by  the two errors 
is of length  greater t.han lo6. This seems quite sufficient to  ensure 
detection of the errors. Furthermore,  the  MLSRS  generated  during 
this  time is a moderately good pseudorandom  sequence and therefore 
gives the effect of a much  longer constraint  length. Remember that 
to  generate a truly  random sequence of length 1 0 6  after t,he first 
transmission error would require v = 1 0 6  + 1. We will therefore 
call this  an essentially perfect error-propagating code, without pre- 
cisely defining t.his term. 

111. UNDETECTED  ERROR  PROBABILITY 
From the English language example of Sections I and I1 it  is clear 

that error-propagat.ing codes allow significant  error  detect,ion. In  
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this section we quantify these  capabilities and develop a CODEC 
which has even better error-detection  capabilities than  the one 
developed in  the  last section. We also discuss automatic detect.ion 
of errors. 

The  undetected  error  probability is clearly a function of the source 
statistics. A very redundant,,  highly structured source  such as English 
makes it easy to  spot  errors soon after  they occur.  A less redundant 
source has  outputs which more closely resemble a totally  random 
bit  string  and  it  takes longer to recognize that  an error has occurred. 
With a fixed-length message, or a fixed degree of error propagation 
t,his translates  into a higher undetected  error  probability. 

If the source has  fractional  rate R then  there  are 2 R N  meaningful 
source outputs of length N .  We define D = 1 - R as the  fractional 
redundancy. A  source with no redundancy ( D  = 0, R = 1) has 
2 N ,  or all possible binary AJ-tuples, as allowable outputs. English 
[SI and  other  natural languages are between 50- and 75-percent 
redundant ( R  = 0.5 to 0.25, D = 0.5 to  0.75). 

Now suppose we have a perfectly  error-propagating, or an essen- 
tially perfect error-propagating code and use it  to  transmit a source 
output N bits long. If the first transmitted  bit is received in error 
then  the decoder puts  out  an essentially random  bit  stream.  The 
probability of the  error going undetected P ( e )  is the  probability 
that  this  random  bit  stream is a meaningful  source output. Therefore, 

P ( e )  A 2 R N / 2 N  = 2 - N D .  ( 8 )  

Similarly, if the first  error  occurs k bits  from  the  end of the message 
then 

P ( e )  A 2 - k D .  (9) 

It is seen that  the  early  bits  are well protected  against  undetected 
errors while later  bits  are less well protected. It is possible to correct 
this  by use of a two-stage encoding  procedure. First encode the 
informat,ion bits u to  obtain x as in (1) .  Then encode x ,  last  bit 
first to  obtain  the sequence z .  The  taps for the  two encoders are 
chosen independently  and a t  random. The z sequence is transmitted 
as  it comes out of the second encoder. The decoder also has two 
stages. The first stage  takes y = z CB e and  outputs x^ in  reverse 
order. The second stage  takes x^ in proper  order,  and decodes it  to 
obtain il. Now any transmission errors  propagate in both directions 
and if N = v we find P ( e )  A 2 - N D .  To  be precise, if d = u CB il and 
j o  denotes  the position of the first  transmission error, one can show 
that except  for j = N + 1 - j,, the d i  are  independent  random 
bits. Further, 

Pr(dN+l-jO = 1) = 1 / 2  + 2-(N+‘-io) (10) 

and  there is weak dependence of dN+l--jO on the preceding error bits. 
Thus P ( e )  2 - N D  with 2 W N - l ) D  being an  upper  bound. 

As an example of the efficacy of this technique, we encoded the 
message “I AM NOT ABLE TO PROVIDE SUPPORT” using the encoder 
of Fig. 1 (a) for the first stage  and a different constraint  length sixteen 
encoder for  the second stage  (taps = 1011010011101001). When 
the  same single-character  error (taking  the T of NOT to  a W with 
the single-stage CODEC) was simulated the  output of the two-stage 
CODEC was “XRJNZFXHCRQX’R?MEWCA?OSQVHA*K BOH.” Note  that 
just, as for the single-stage CODEC, even when N > Y error  propaga- 
tion  is essentially  perfect  for moderate values of Y .  In  this example, 
N = 165 bits > 1 0 ~ .  

IV. DISCUSSION 

Although this  paper is concerned with using the  natural redun- 
dancy for  error detection,  it is clear that  the unidirectional error- 
propagating  CODEC  can  be used for at least  limited  error correction. 
For example, the decoded message “ I  AM NOWJ.NXAAVWM,EWTY, 
ROVBOZ, RI” indicates that   the first transmission  error  occurred at 
or prior to  the J of NOWJ, since such a sequence of letters is not 
allowed in English. Similarly, the sequence I AM is probably error 
free since it  is followed by several  plausible characters. If we t ry  
changing the J of NOWJ to  a space we obtain  the  output “I AM NOW 
HU.CVKIWXRORBHUWTZHUIGK*” which indicates that  either this 

was not  the proper correction or that  more than  one  character  is  in 
error. Trying  other single-character corrections on  the J and W of 
NOWJ results in meaningful text only when the proper  correction 
(W to  T) is made. If a second error occurs later  and  it  is  far enough 
removed from the first  error, then correction of both errors  can 
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proceed independently.  Use of a  more  sophisticated decision algo- 
rithm (basically, a  sequential  decoder) allows correction of many 
more  error patterns. Surprisingly,  such  an  algorithm will decode 
reliably (i.e., with a vanishingly  small  error probability  as Y -* m ) 
so long as the  rate of the source  is less than  the  capacity of the chan- 
nel. This technique  is  thus optimal. The proof of this result is left 
t o  a later  paper [SI which also generalizes this  technique  to coders 
with  rates  other  than 1. I n  particular if the channel  is noiseless then , rates larger than 1 can be used to  produce data compression. To 
date,  optimal source coders or data compressors have been complex 
pieces of equipment, while the  optimal source coders derived in [SI 
are extremely  simple to implement. All of the complexity is trans- 
ferred to  the decoder, a situation well matched to  remote telemetry 
or  other applications where complex operations are easier to  perform 
at the receiver than  at  the  transmitter. 

A word is  in order concerning automatic implementation of the 
recognition of meaningful source outputs. When the source output 
is a natural language  such as English, a human is  usually the  ultimate 
destination and  he can easily perform this  task.  In  those instances 
where machine recognition is  required,  use of first- or second-order 
frequency statistics is quite feasible. Using only individual character 
frequencies with a 5-bit code results in D = 0.18 so that transmission 
errors 23 or more  characters from the end of the message have P (e) 5 
10-6. Use of a more standard code, such as the %bit ASCII code 
results in D 0.48, and transmission  errors  nine or more  characters 
from the  end of the message have P ( e )  5 10-6. Limited  error detec- 
tion  is particularly simple with codes such as  ASCII where some 
characters are reserved for future use and  are therefore  currently 
not allowed. The detector  merely  waits  for these unallowed charac- 
ters  to announce the presence of an error. 

For  data sources such as digitized TV or facsimile, other detection 
schemes are needed. When an error-propagating CODEC is used 
to  transmit a digitized picture, a transmission  error will be easily 
detectable  by  the snowy-looking random pattern  it causes. Auto- 
matic recognition of this condition could rely on frequency of transi- 
tion between gray levels or more complicated statistics of the source. 

This discussion could continue with  many  other special cases, but 
we  will stop here since our point has been made: complete knowledge 
of the rules of a language  is not needed. This remark applies equally 
well to  the error-correction problem treated  in [SI. 

Although it was not mentioned in  the body of the paper, it is 
obvious that  there  are  other circuits  for  producing  error-propagating 
codes. The convolutional encoder, feedback decoder pair was used 
for purposes of example because of its ease of implementation. There 
is one  other  CODEC which deserves mention, this being the feedback 
encoder, convolutional decoder pair which results from interchanging 
the encoder and decoder in Figs. 1 and 2. A CODEC of this  type 
with constraint length Y is also Y - 1 error  propagating, but now 
the error  propagation ceases Y - 1 time  units  after  the transmission 
error. This can be useful if automatic recovery is desired. For exam- 
ple, with Y = 31 and  the 5-bit/character code previouslyb used “I 
AM NOT ABLE TO PROVIDE SUPPORT” is decoded as “1 AM NOYRZXFSZTO 
PROVIDE SUPPORT” when the error pattern is the  one which caused 
the T to be decoded as a W with the  CODEC of Fig. 1. Savage [7] 
proposed the use of such  feedback encoders/convolutional decoders 
for eliminating undesired periodicities in  the information sequence. 
He noted the error-propagation  problem and  in  fact ruled out con- 
volutional encoders with  feedback decoders because of the catas- 
trophic error  propagation. It is hoped that  this  paper will help focus 
attention on the brighter  side of what  has been regarded as a serious 
problem. 
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Synchronization Using Pulse Edge  Tracking in Optical 
Pulse-Position Modulated  Communication Systems 

Absfrucf-A pulse-position modulated  (PPM) optical communi- 
cation system  using narrow pulses of light for  data  transmission 
requires  accurate  time synchronization between  transmitter  and 
receiver. The  presence of signal  energy in the  form of optical 
pulses suggests the use of a  pulse  edge-tracking method of main- 
taining the  necessary timing. In this  report  the edge-tracking 
operation in a binary P P M  system is examined, taking  into account 
the quantum  nature of the optical transmissions.  Consideration is 
given first to “pure”  synchronization using a periodic pulsed in- 
tensity, then  extended  to  the  case  where position modulation is 
present  and auxiliary  bit decisioning is  needed  to  aid  the  tracking 
operation. Performance  analysis  is  made in terms of timing error 
and  its  associated statistics.  Timing error  variances  are shown as 
a function of system signal-to-noise ratio. 

I. INTRODUCTION 

The successful operation of any  digital communication  system 
requires accurate  time synchronization between t.he t,ransmitter  and 
receiver. In  optical  digital systems a common procedure is to use a 
noncoherent pulse-position modulation (PPM) mode of operation 
using narrow  pulses of light  intensity  to  carry  the  data [l]. The 
presence of signal  energy  in the form of optical pulses suggests the 
use of a pulse  edge-tracking  method of maintaining the necessary 
time synchronization. In  pulse edge tracking the edges of the trans- 
mitted pulses are used as timing markers  to  adjust  the synchroniza- 
tion of the receiver. When the  optical pulses are t,ransmitted as a 
periodic  pulse  t,rain of known fixed frequency, the edge tracking 
corresponds to  “pure” synchronization,  in that  the  transmitted 
edges always occur a t  periodic points in time. When position modula- 
tion is present, however, the pulses of light  are shifted  according to 
the  data,  and  the edge-tracking  operation must be modified in 
order to  maintain receiver timing. The  latt,er  type of synchronization 
is often called modulation-derived  synchronization, or “impure” 
syncing, since the timing must  be derived  from, or accomplished 
in  the presence of, the  data modulation. In  this  paper we examine 
the  pure  and  impure edge-tracking  operation in an optical binary 
PPM system, taking  into  account  the  quantum  nature of the light 
transmission.  Performance comparisons are  made in terms of the 
instantaneous timing  error of the receiver and  its associated statis- 
t,ics. The effect of imperfect  timing  on the overall data decoding 
operation has been studied elsewhere [2] and will not be considered 
here. 

The  time synchroniaat,ion  problem has of course received consider- 
able  attention in the  past for the  additive Gaussian noise channel, 
and  the  interested reader is referred to  the  presentations in recent 
books by Stiffler [3], Lindsey [4, ch. 31, and Lindsey and Simon 
[SI. Although the  approach here  parallels  these earlier studies, the 
quantum  nature of the  optical channel produces  equations signifi- 
cantly different than those of the purely  Gaussian channel. Similar 
mathematical differences were previously observed with  the optical 
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