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Signal Design and Detection in Presence of
Nonlinear Phase Noise
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Abstract—In optical fiber transmission systems using inline
amplifiers, the interaction of a signal and amplifier noise through
the Kerr effect leads to nonlinear phase noise that can impair
the detection of phase-modulated signals. We present analytical
expressions for the maximum-likelihood (ML) decision boundaries
and symbol-error rate (SER) for phase-shift keying and differ-
ential phase-shift keying systems with coherent and differentially
coherent detection, respectively. The ML decision boundaries
are in the form θ(r) = c2r2 + c1r + c0, where θ and r are
the phase and the amplitude of the received signal, respectively.
Using the expressions for the SER, we show that the impact of
phase error from carrier synchronization is small, particularly for
transoceanic links. For modulation formats such as 16-quadrature
amplitude modulation, we propose various transmitter and re-
ceiver phase rotation strategies such that the ML detection is
well approximated by using straight-line decision boundaries. The
problem of signal constellation design for optimal SER perfor-
mance is also studied for a system with four signal points.

Index Terms—Maximum likelihood (ML) detection, nonlinear
optics, optical fiber communication, optical Kerr effect, phase
noise, quadrature amplitude modulation (QAM).

I. INTRODUCTION

O PTICAL fiber transmission systems using coherent or
differentially coherent detection of phase-modulated sig-

nals, such as phase-shift keying (PSK), differential phase-shift
keying (DPSK), or quadrature amplitude modulation (QAM),
are subject to impairment by phase noise as well as amplitude
noise. Amplified spontaneous emission (ASE) from inline am-
plifiers is a major source of noise and is referred to as linear
noise in this paper. Gordon and Mollenauer [1] showed that
signal and ASE can interact via the fiber Kerr nonlinearity to
produce nonlinear phase noise (NLPN). Since NLPN is a major
system impairment, particularly for long haul links [2]–[4],
methods to mitigate the effect of NLPN and/or system designs
in the presence of NLPN are required. The impact of fiber
nonlinearities on system performance has been investigated
since the 1990s [5], [6]. Various approaches have been studied
to mitigate the effect of nonlinearities, such as path-averaged
signal power minimization [7] or phase noise variance mini-
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mization [8]–[10], by designing the gains and spacings of the
inline amplifiers. Management of dispersion and signal power
[11], [12] and inline phase-noise compensation techniques such
as placement of phase modulators along the fiber link [13] have
also been considered. Furthermore, receiver-based detection or
compensation techniques that exploit the correlation between
received power and phase [14]–[16] have been proposed. How-
ever, few studies have been undertaken to investigate signal de-
sign and maximum-likelihood (ML) detection in systems with
nonlinearity. In this paper, we focus on single-channel systems,
neglecting chromatic dispersion and multichannel effects and
considering self-phase modulation-induced NLPN only. We
study signal design and implementation of ML detection for
phase-modulated systems with linear phase noise and NLPN.
For PSK/DPSK systems, we present analytical derivations
for the ML decision boundaries and show how to approxi-
mate ML detection by phase postcompensation and straight-
line decision boundaries. For 16-QAM systems, we propose
signal design strategies such that ML detection can be well
approximated by using straight-line decision boundaries. We
also obtain analytical expressions for the system symbol-error
rate (SER).

Our paper is organized as follows. In Section II, we study
the PSK and DPSK systems with coherent or differentially
coherent detection and derive analytical expressions for the ML
decision boundaries and the corresponding SERs. We evaluate
the impact of the phase error from carrier synchronization
on SER performance, and we show that it is negligible, par-
ticularly for transoceanic links. In Section III, we focus on
16-QAM systems. For different degrees of system nonlinearity,
we study various phase rotation techniques at the transmitter
and the receiver such that ML detection is well approximated by
using straight-line decision boundaries. Finally, in Section IV,
we investigate the problem of signal constellation design to
optimize SER performance for a system with four signal
points.

II. ML DETECTION FOR PSK/DPSK SYSTEMS

In this section, we study PSK and DPSK systems with
coherent or differentially coherent detection, respectively. As
the signal power is the only design parameter and its effects
on system performance have been studied elsewhere in the
literature, we will focus on the implementation of ML detection
in these systems. We will analytically derive the ML decision
boundaries and the corresponding SERs.

Consider a transmission system of length L. For analyti-
cal convenience, we assume that the system uses distributed
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TABLE I
PARAMETER VALUES USED IN THIS PAPER

amplification, where the incremental amplifier gain compen-
sates for the incremental fiber loss. We assume that dispersion
and multichannel effects are negligible. The ASE noise gener-
ated by the inline amplifiers accumulates at the receiver and is
generally modeled as complex zero-mean circularly symmetric
Gaussian random variables with variance in two polarizations

σ2 = 2Ssp∆νopt = 2hνnsp∆νoptαL = bαL (1)

where ∆νopt is the bandwidth of an optical filter at the re-
ceiver, nsp is the spontaneous emission factor, ν is the signal
frequency, and α is the attenuation coefficient. We will model
a system using nonreturn-to-zero (NRZ) pulses operating at
42.7 GSymbol/s (40 GSymbol/s with 7% forward error correc-
tion overhead) throughout the paper. The bit rate is 80 Gb/s for
quaternary signals and 160 Gb/s for 16-QAM signals.

As for the received signal, let the received phase be θ and
define the received amplitude r as the received electric field
amplitude divided by σ. For an NRZ signal with input power P
and phase θo, the joint probability density function (pdf) of the
received amplitude and phase is given by [2]

fP,θo
(r, θ) =

fR(r, P )
2π

+
1
π

∞∑
m=1

Re
{
Cm(r)ejm(θ−θo)

}
(2)

where

fR(r, P ) = 2re−(r2 +P/σ2)I0(2r
√
P/σ2)

is the Rice pdf of the received amplitude, ρs = P/σ2 is the
optical signal-to-noise ratio (OSNR), and Re{·} denotes the
real part of a complex number. The Fourier coefficient Cm(r)
is given by

Cm(r) =
r sec

√
jmx

sm
eρs

√
jmx tan

√
jmxe−

r2+α2
m

2sm Im

(
αmr

sm

)
(3)

where

x =
γPL

ρs + 1/2
, αm =

√
ρs sec

√
jmx, sm =

tan
√
jmx

2
√
jmx

and Im(·) denotes the mth-order modified Bessel function of
the first kind. Table I lists the parameter values used in this
paper.

As an illustration, the received signal pdf and decision
boundaries for a 4-PSK system are shown in Fig. 1 for an input
power of −4 dBm after L = 5000 km of signal propagation.
The pdf is distorted from the circular Gaussian shape, and the
ML decision boundaries are spiral-like, indicating the presence
of NLPN.

Fig. 1. Received signal pdf and corresponding ML decision boundaries
(shown as dashed lines) for a 4-PSK system in presence of nonlinear phase
noise. The signal power is −4 dBm, and the system length is 5000 km.

A. ML Decision Boundaries

To implement ML detection, we would need to know the
ML decision boundaries as a function of ρs, θo, r, and θ. With
knowledge of the boundaries, we can either implement a 2-D
lookup table (such as the one proposed by [14]) that maps
the received signal to one of the signal points or compensate
the phase of the received signal and implement straight-line
decision boundaries. As the two methods are equivalent to
each other, we will focus on the latter and refer to it as phase
postcompensation for the rest of this paper.

For an M -PSK system with rate R = log2 M b/symbol,
without loss of generality, we can focus our attention on one of
the transmitted signal points so with power P , phase θo = 0,
and corresponding received pdf fP,0(r, θ). Define the cen-
ter phase θc(r) of fP,0(r, θ) such that [θc(r) − π/M, θc(r) +
π/M ], r ∈ R, denotes the region where the received signal
is mapped to so under ML detection. In this case, the opti-
mal phase postcompensation operation can be mathematically
defined as

θ′ = θ − θc(r)

where θ′ is the signal phase after compensation, and the corre-
sponding ML decision boundaries will be at θ′ = ±π/M . The
center phase θc(r) satisfies the relation

fρs,0(r, θc + π/M) = fρs,0(r, θc − π/M). (4)

In the Appendix, it can be shown that with some
approximations

θc(r) =
√

x

2
sin

√
2x− sinh

√
2x

cosh
√

2x− cos
√

2x
r2

− 4
√

ρsx

2
sin
√

x
2 cosh

√
x
2 − cos

√
x
2 sinh

√
x
2

cosh
√

2x− cos
√

2x
r

+ h(x, ρs) (5)
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Fig. 2. Received signal pdf and corresponding ML decision boundaries
(shown as dashed lines) after optimal phase post-compensation for a 4-PSK
system. The signal power is −4 dBm, and the system length is 5000 km. The
resulting decision boundaries are straight lines, allowing easy implementation
of ML detection.

Fig. 3. Received signal pdf and corresponding ML decision boundaries
(shown as dashed lines) after phase rotation using Ho and Kahn’s [14] method
for a 4-PSK system. The signal power is −4 dBm, and the system length is
5000 km.

where h(x, ρs) is a function independent of r defined in the
Appendix. Notice that θc(r) is in the form c2r

2 + c1r + c0,
which is in contrast to the form

∑
i=1 c2ir

2i that is used in
some experiments [4], [16] for NLPN mitigation or other forms
suggested by Ho [2] for phase noise variance minimization. In
addition, θc(r) is independent of M . If we rotate the received
signal by θc(r), the resulting decision boundaries are shown
in Fig. 2. The straightness of the decision boundaries validates
the approximations used in the derivation of θc(r) and shows
that one can implement ML detection simply by rotating the
received phase by θc(r). As a comparison, Fig. 3 shows the
resulting decision boundaries after received phase rotation us-
ing Ho and Kahn’s [14] method. The performance obtained
using straight-line decision boundaries with that method will
be inferior to that of ML detection.

B. SER forM -PSK andM -DPSK Systems

Using the analytical expression for the center phase θc(r),
we can approximately implement ML coherent detection in

M -PSK systems by optimal phase postcompensation and
straight-line decision boundaries. In addition, we can also an-
alytically derive the system performance measured in terms of
the SER. Let the phase after phase postcompensation be θ′ =
θ − θc(r). The SER using straight-line decision boundaries is
then given by

1−P (correct detection)

= 1−
∞∫

0

π/M∫
−π/M

fP,0 (r, θ′+ θc(r)) dθ′dr

=
M−1
M

− 1
π

∞∫
0

π/M∫
−π/M

∞∑
m=1

Re
{
Cm(r)ejm(θ′ + θc(r))

}
dθ′dr

=
M−1
M

−
∞∑

m=1

2
M

sinc
(mπ

M

) ∞∫
0

Re
{
Cm(r)ejmθc(r)

}
dr

=
M−1
M

−
∞∑

m=1

2
M

sinc
(mπ

M

) ∞∫
0

|Cm(r)|dr. (6)

In the Appendix, it is shown that the SER can be expressed as

SER =
M − 1
M

−
∞∑

m=1

2
M

sinc
(mπ

M

)

× Re

{
um(x) ×

∞∑
k=0

(jgm(x))k

k!

×
βm(x)mΓ

(
m+k+2

2

)
2m+1am(x)

m+k+2
2 Γ(m + 1)

× 1F1

(
m + k + 2

2
,m + 1;

β2
m(x)

4am(x)

)}
(7)

where 1F1(p, q; z) is the confluent hypergeometric func-
tion of the first kind, Γ(z) is the Gamma function, and
am(x), βm(x), gm(x), and um(x) are functions of m and x,
which are defined in the Appendix.

In addition, the marginal pdf of the phase after optimal phase
postcompensation θ′ will be given by

f(θ′) =

∞∫
0

fP,0 (r, θ′ + θc(r)) dr

=
1
2π

+
1
π

∞∑
m=1


 ∞∫

0

|Cm(r)| dr


 cos(mθ′).
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Fig. 4. SER for a 4-PSK system with coherent detection for various input
power levels and system lengths. ML detection is used.

For M -DPSK systems with differentially coherent detection,
the differential phase θd between a symbol and the previous
symbol will have a pdf

fd(θd) =
1
2π

+
1
π

∞∑
m=1


 ∞∫

0

|Cm(r)| dr




2

cos(mθd). (8)

Similar to the SER of M -PSK systems, it can be shown that the
SER of M -DPSK systems is given by

SERd =
M − 1
M

−
∞∑

m=1

2
M

sinc
(mπ

M

) ∞∫
0

|Cm(r)| dr




2

.

(9)

The SER of a 4-PSK system as a function of L is shown
in Fig. 4 for various input power levels. We can see that the
analytical expression of (7) generally agrees well with numer-
ical results [obtained by numerically integrating fρs

, 0(r, θ)
over the region that corresponds to ML detection error on the
signal constellation plane]. The noise power and, hence, the
SER increase with system length, and for each L, there exists
an optimal input power that minimizes the SER. The SER for
a 4-DPSK system is shown in Fig. 5. Compared with that of a
4-PSK system, the SER is generally larger in a 4-DPSK system
for the same input power level and L and exhibits similar trends.
These results are in agreement with expectations.

Using (6), it is also possible to study the system impact of
other impairments, such as phase error resulting from carrier
synchronization. Let the distribution of this phase error be

ferr(θ) =
∞∑

m=0

Re
{
Dmejmθ

}
. (10)

As the phase error directly adds to the received phase, the pdf of
the overall received phase foverall is the convolution of fR, θo

with ferr. When foverall is expressed as a summation of Fourier
components, the mth Fourier coefficient is simply given by
DmCm(r). The phase error should be symmetric about 0, and

Fig. 5. SER for a 4-DPSK system with differentially coherent detection for
various input power levels and system lengths. ML detection is used.

Fig. 6. SER for a 4-PSK system using ML detection with phase error from
carrier synchronization. The power of the signal is −8 dBm, and the degree
values represent the standard deviation of the phase error.

hence, Dm is a real number and does not affect the derivation of
the ML decision boundaries (see the Appendix). However, the
SER performance is expected to worsen with increasing phase
errors from carrier synchronization. To numerically illustrate
its impact, we consider a digital feedforward carrier recovery
system (such as the one studied by Ip and Kahn [17]) in which
the phase error is known to be Gaussian distributed. Fig. 6
shows the SER of a 4-PSK system as a function of L and
the standard deviation of the phase error. From the figure, the
impact of phase errors is more profound when the SER is
low, and the impact is small for transoceanic links with length
typically over 5000 km.

III. QAM SIGNAL DESIGN AND ML
DETECTION STRATEGIES

In this section, we focus on signaling schemes encoding
over 2 b/symbol, such as 16-QAM with coherent detection.
We separately study systems with low and high nonlinearities
and propose various phase rotation techniques at the transmitter
and receiver to approximate ML detection using straight-line
decision boundaries.
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Fig. 7. A 16-QAM transmitter setup. A continuous wave input is equally split
into two branches and passed through two QPSK modulators modulated by
bit streams b0, b1, b2, and b3. The outputs are then combined with unequal
weights, resulting in a 16-QAM signal set.

Fig. 8. Received signal pdf and corresponding ML decision boundaries
(shown as dashed lines) for a square 16-QAM system with Pavg = −13 dBm
and L = 3000 km.

A. Low Nonlinearity Regime

We will start with a usual square 16-QAM constellation with
points located at

√
Pej(±π

4 ±π),
√

9Pej(±π
4 ±π)

√
5Pej(± tan−1(1/3)±π

2 ),
√

5Pej(± tan−1(3)±π
2 )

and average power Pavg = 5P . A 16-QAM transmitter setup
is shown in Fig. 7. The received pdf and the corresponding
ML decision boundaries are shown in Fig. 8 for a system with
Pavg = −13 dBm and L = 3000 km.

With this constellation set, we cannot perform optimal phase
postcompensation, as the transmitted power is not constant for
all the signals, whereas evaluating θc(r) given by (5) depends
on the knowledge of the transmitted power. However, for
16-QAM systems with low degree of nonlinearity, the decision
boundaries (such as those shown in Fig. 8) are close to straight
lines, and it may be possible to design the transmitted signal
set or process the received signal such that the ML detection
boundaries are well approximated by straight lines. As a first
step, we can prerotate each of the 16 signal points by its mean
nonlinear phase shift θNL such that the modes of the condi-
tional pdfs coincide with those in a linear 16-QAM system.
This will be referred to as phase precompensation, and one such
example is shown in Fig. 9 for Pavg = −1 dBm. As NLPN
is a major limiting factor in system performance, techniques

Fig. 9. Received signal pdf for a 16-QAM system with phase precompensa-
tion only. (Dashed lines) Straight-line decision boundaries used for detection.
The average power is −1 dBm, and the system length is 3000 km.

Fig. 10. Received signal pdf for a 16-QAM system with phase precom-
pensation and NLPN postcompensation. (Dashed lines) Straight-line decision
boundaries used for detection. The average power is −1 dBm, and the system
length is 3000 km.

to mitigate phase noise such as those discussed in [8]–[10]
and [14] may be beneficial. We focus on the technique studied
by Ho and Kahn [14], which will be referred to as NLPN
postcompensation. The phase of a received signal with power
Prec is rotated by an angle

φ = −γLPrec/2 (11)

according to Ho [2] and Liu et al. [15]. When phase precom-
pensation is used with NLPN postcompensation, the resulting
pdf is shown in Fig. 10 for Pavg = −1 dBm. In this case, the
transmitted signal phase is not prerotated by θNL. Instead, the
amount of prerotation is

θNL − EP

[
γLPrec

2

]
= θNL − γL(P + σ2)

2
(12)

where EP [·] denotes the expectation given a transmitted signal
power P . The shape of the resulting pdf is less spiral-like and
is closer to that of a linear 16-QAM system.

With these received signal pdfs, we implement the usual
straight-line decision boundaries, which are shown as dashed
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Fig. 11. SER as a function of average power for a square 16-QAM system
using ML decision boundaries, phase precompensation with and without NLPN
postcompensation, and straight-line decision boundaries. The system length is
3000 km.

lines in Figs. 9 and 10. The SERs of these schemes, together
with the SER using the ML decision boundaries without phase
precompensation and NLPN postcompensation, are shown in
Fig. 11 for various input power levels. At low power levels,
all three schemes similarly perform. This is in agreement with
what was expected since NLPN is not dominant at low power
levels, and the ML decision boundaries are close to a rectan-
gular grid. Note that the performance using the ML decision
boundaries is optimized at approximately Prec = −3 dBm and
degrades at high powers due to the increasing dominance of
NLPN. Compared to the ML decision boundaries, the SER with
phase precompensation is much higher. Phase precompensation
with NLPN postcompensation significantly reduces the SER
and even outperforms ML detection at low power levels. This
is possible since after phase precompensation, the transmitted
signal constellation set is different than the original square
16-QAM constellation, and hence, the SER is not necessarily
lower bounded by that of a square constellation with its corre-
sponding ML decision boundaries.

B. High Nonlinearity Regime

Fig. 12 shows the received pdf and the corresponding de-
cision boundaries for the square 16-QAM constellation with
Pavg = 7 dBm, which is a relatively high power. As shown
in the figures, when the nonlinearity is high (large γ or high
input power), the pdf and the decision boundaries are severely
distorted by NLPN such that they bear little resemblance to
those in a linear system. The shape of the pdf suggests that
detection errors will be mainly caused by the received signal
being incorrectly detected as a symbol having the same power
but with a different phase than the correct one. Therefore,
it might not be sensible to approximate ML detection with
straight-line decision boundaries.

Fortunately, we can gain some insight into implementing ML
detection when we look at the decision boundaries in a different
way. Fig. 13 shows the same decision boundaries as Fig. 12 but
in terms of r and θ. From the figure, we can see that the received

Fig. 12. (a) Received signal pdf and (b) corresponding ML decision bound-
aries for a 16-QAM system with Pavg = 7 dBm. The system length is
3000 km.

Fig. 13. ML decision boundaries for a square 16-QAM system with Pavg =
7 dBm in terms of r and θ. The system length is 3000 km.

signal can be mapped into three sets according to r independent
of θ, corresponding to the three different input signal powers
{P, 5P, 9P} in the square 16-QAM constellation. The two
values r15 and r59 that define the mapping are given by the
intersections of the Rice pdfs

fR(r15, P ) = fR(r15, 5P ), fR(r59, 5P ) = fR(r59, 9P ).
(13)

In this case, we can actually implement ML detection by first
mapping the received signal to one of {P, 5P, 9P} and then
performing optimal phase postcompensation using the θc(r)
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corresponding to the mapped power. This mapping of r to
{P, 5P, 9P} is not error free since r is a noisy version of the
input power; however, when such an error occurs, ML detection
would have resulted in an error in the first place. Therefore,
such a mapping-and-postcompensation strategy will not further
degrade the system performance. After optimal phase postcom-
pensation, the ML decision boundaries will be straight lines in
terms of r and θ, and hence, the strategy outlined above is a
practical way to approximate ML detection in 16-QAM sys-
tems with high nonlinearity. Furthermore, in a square 16-QAM
constellation, since the phases of the signals with power 5P
are not uniformly distributed, such a signal set may not be
optimal in the high-nonlinearity regime, where phase noise is
the performance-limiting factor. Consequently, a first step to
optimize the signal set is to design the phase of these points to
be equally spaced on [0, 2π), and this signal set will be referred
to as the equally spaced set. The resulting SER performance is
shown in Fig. 11. As expected, the equally spaced set performs
well when the power and, hence, nonlinearity are high and does
not provide much of an advantage over the square 16-QAM
constellation when the power is low and the system is essen-
tially linear.

IV. SIGNAL CONSTELLATION OPTIMIZATION

In the previous section, we briefly studied signal point design
to ease implementation of ML detection and improve SER
performance for the case of 16-QAM systems with different
degrees of nonlinearity. Ultimately, for a given γ, σ2, number
of signal points, and an average transmit power constraint, one
might want to find the optimal signal constellation set that
minimizes the SER. However, it is known that for non-Gaussian
noise statistics, no analytical results for the optimal signal set
exist [18], and numerical methods that are developed in solving
such optimization problems are rather complicated [19]. There-
fore, we only focus on four-point signal constellation optimiza-
tion with some symmetry constraints such that the problem is
more tractable, and the solution is more attractive for practical
implementation purposes. Other than the 4-PSK modulation
format, three constellation sets are considered: the 1–3 set with
signal points located at {0,

√
4P/3,

√
4P/3e±j(2π/3)}, the

2–2 set with points {±
√
ε1Pe

jθ1},
√
ε2Pe

j(±(π/2)+θ2)}, and
the 1–2–1 set with points {0,±

√
ε3Pe

jθ3},
√
ε4Pe

j(π/2+θ4)}.
These sets are shown in Fig. 14. The parameters ε1, ε2, and
ε3 < ε4 are constrained such that the average power of each
set is P , and θ1, θ2, θ3, and θ4 are determined by the phase
precompensation technique described in the previous section.

Fig. 15 shows the SER using ML detection as a function of
the average power for the various constellation sets considered
with the ε parameters optimized for each average power. From
the figure, we can see that as the average power goes up, a set
with signal points having different power levels is preferred.
This is due to the fact that NLPN increases with power, which
results in the dominance of total phase noise over amplitude
noise. In the limit that the impact of NLPN is severe, one
can expect that a constellation set with all the signal points
having different power levels (i.e., a 4-PAM constellation set)
is optimal.

Fig. 14. Signal constellation sets studied for SER optimization. (a) 4-PSK set.
(b) 1–3 set. (c) 2–2 set. (d) 1–2–1 set.

Fig. 15. SER for different four-point constellation sets as a function of
average power. The system length is 7000 km.

V. CONCLUSION

In this paper, we studied signal design and implementation
of ML detection for coherent optical transmission systems in
the presence of linear phase noise and NLPN. We analytically
derived the expression for the ML decision boundaries and the
corresponding SER for M -ary PSK and DPSK systems with
differentially coherent detection. The decision boundaries are in
the form θ(r) = c2r

2 + c1r + c0, where θ and r are the phase
and amplitude of the received signal, respectively. The impact
of phase errors from synchronization on SER has also been
investigated and was shown to be small for transoceanic links.
For 16-QAM modulation formats, we studied various signal
phase rotation techniques, including phase precompensation
and NLPN postcompensation such that ML detection is well
approximated by using straight-line decision boundaries. The
problem of constellation set design for optimal SER perfor-
mance was also considered for a system with four signal points.
The impact of WDM effects and the interplay of chromatic
dispersion and the Kerr effect on signal design and detection
will be investigated in future work.
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APPENDIX

A. Derivation of the Center Phase θc(r)

The center phase satisfy (4)

fP,0(r, θc + π/M) = fP,0(r, θc − π/M).

Substitute (2) into (4), and after some algebraic manipulation

∞∑
m=1

|Cm(r)|sin
(mπ

M

)
sin[arg (Cm(r))+ mθc(r)]= 0. (14)

For high signal-to-noise ratio (ρs � 1), x 
 1, and us-
ing the approximations sin

√
jmx ≈

√
jmx− (

√
jmx)3/3,

tan
√
jmx ≈

√
jmx + (

√
jmx)3/3, and Im(y) ≈ ey/

√
2πy

for large |y|

Cm(r) ≈ 2r
(

1 +
jmx

3

)
eρsjmx

× e−[r2+ρs(1+jmx)](1−jmx/3) e2r
√

ρs(1+ jmx
3 )√

4πr
√
ρs

(
1 + jmx

3

)
and the argument

arg (Cm(r)) ≈ mx

3

(
1 + r2 + ρs + 2r

√
ρs −

1
2

)

which is proportional to m. Therefore, if we write
arg(Cm(r)) ≈ m arg(C1(r)) and substitute back into (14)

∞∑
m=1

|Cm(r)| sin
(mπ

M

)
sin [m {arg (C1(r)) + θc(r)}] = 0

and the solution to the center phase will be given by

θc(r) = −arg (C1(r))

=
√

x

2
sin

√
2x− sinh

√
2x

cosh
√

2x− cos
√

2x
r2

− 4
√

ρsx

2
sin
√

x
2 cosh

√
x
2 − cos

√
x
2 sinh

√
x
2

cosh
√

2x− cos
√

2x
r

+ h(x, ρs)

where

h(x, ρs) = −π

4
+ tan−1

(
cot
√

x

2
tanh

√
x

2

)

− ρs

√
x

2
sin

√
2x + sinh

√
2x

cos
√

2x + cosh
√

2x

+ 4ρs

√
x

2
sin

√
2x cosh

√
2x−cos

√
2x sinh

√
2x

cosh 2
√

2x−cos 2
√

2x

after some algebraic manipulations.

B. Derivation of the SER for Coherent Detection
M -Ary PSK System

We need to evaluate the integral
∫∞
0 |Cm(r)|dr. Since

Im(y) ≈ ey/
√

2πy for large |y|, we can write

|Im(y)| ≈ Re
{
Im(y)e−jIm{y}ej 1

2 arg(y)
}
.

Now, if we let

um(x) =

∣∣∣∣∣∣
sec

√
jmxeρs

√
jmx tan

√
jmxe−

α2
m

2sm

sm

∣∣∣∣∣∣
× e−j 1

2 arg(βm(x))

βm(x) =αm/sm

am(x) =Re{1/2sm}
gm(x) = −Im {βm(x)}

then the integral
∫∞
0 |Cm(r)|dr is given by

Re


um(x)

∞∫
0

re−am(x)r2
ejgm(x)rIm (βm(x)r) dr




=Re


um(x)

∞∑
k=0

∞∫
0

r
(jgm(x)r)k

k!
e−am(x)r2

Im(βm(x)r)


dr

=Re

{
um(x)

∞∑
k=0

(jgm(x))k

k!

×
βm(x)mΓ

(
m+k+2

2

)
2m+1am(x)

m+k+2
2 Γ(m + 1)

× 1F1

(
m + k + 2

2
,m + 1;

β2
m(x)

4am(x)

)}

where the last two equalities follow from the Maclaurin series
expansion of ey and Gradshteyn and Ryzhik [20, Sec. 6.631].
The expression for SER then follows.
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